Artificial Intelligence And Image Processing


Ontology type: rdfs:Resource  | skos:Concept     


Concept Info

NAME

ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING

Latest Publications max 20 shown

  • 2019-12 The research about radiometric technology of two-dimensional rotary table based on image gray level in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2019-12 Stable haptic feedback generation for mid-air gesture interactions: a hidden Markov model-based motion synthesis approach in ROBOMECH JOURNAL
  • 2019-12 Recurrently exploiting co-saliency of target for part-based visual tracking in APPLIED SIGNAL PROCESSING
  • 2019-12 Orthodontic Treatment Planning based on Artificial Neural Networks in SCIENTIFIC REPORTS
  • 2019-12 Adaptive visual target tracking algorithm based on classified-patch kernel particle filter in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2019-12 Distortion-specific feature selection algorithm for universal blind image quality assessment in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2019-12 Pointwise Multi-resolution Feature Descriptor for Spectral Segmentation in SENSING AND IMAGING
  • 2019-12 Research on application of multimedia image processing technology based on wavelet transform in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2019-12 Collaborative efforts to forecast seasonal influenza in the United States, 2015–2016 in SCIENTIFIC REPORTS
  • 2019-12 Two variants of the IIR spline adaptive filter for combating impulsive noise in APPLIED SIGNAL PROCESSING
  • 2019-12 Plane wave imaging combined with eigenspace-based minimum variance beamforming using a ring array in ultrasound computed tomography in BIOMEDICAL ENGINEERING ONLINE
  • 2019-12 Hippocampal subfields segmentation in brain MR images using generative adversarial networks in BIOMEDICAL ENGINEERING ONLINE
  • 2019-12 Convolutional neural networks for radar HRRP target recognition and rejection in APPLIED SIGNAL PROCESSING
  • 2019-12 New inertial algorithm for solving split common null point problem in Banach spaces in JOURNAL OF INEQUALITIES AND APPLICATIONS
  • 2019-12 Two-stage CNNs for computerized BI-RADS categorization in breast ultrasound images in BIOMEDICAL ENGINEERING ONLINE
  • 2019-12 Fully convolutional architecture vs sliding-window CNN for corneal endothelium cell segmentation in BMC BIOMEDICAL ENGINEERING
  • 2019-12 Application of oil-film interferometry image post-processing technology based on MATLAB in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2019-12 An improved infrared image processing method based on adaptive threshold denoising in EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING
  • 2019-12 BO-LSTM: classifying relations via long short-term memory networks along biomedical ontologies in BMC BIOINFORMATICS
  • 2019-12 Statistical models for meal-level estimation of mass and energy intake using features derived from video observation and a chewing sensor in SCIENTIFIC REPORTS
  • JSON-LD is the canonical representation for SciGraph data.

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "sdDataset": "for_codes", 
        "skos:broader": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08"
          }
        ], 
        "skos:inScheme": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/"
          }
        ], 
        "skos:narrower": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/080105"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/080109"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/080103"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/080106"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/080107"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/080111"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/080101"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/080199"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/080104"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/080108"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/080102"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/080110"
          }
        ], 
        "skos:notation": [
          {
            "@language": "en", 
            "@value": "0801"
          }
        ], 
        "skos:prefLabel": [
          {
            "@language": "en", 
            "@value": "ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING"
          }
        ], 
        "type": [
          "http://www.w3.org/2004/02/skos/core#Concept", 
          "http://www.w3.org/2000/01/rdf-schema#Resource"
        ]
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://purl.org/au-research/vocabulary/anzsrc-for/2008/0801'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://purl.org/au-research/vocabulary/anzsrc-for/2008/0801'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://purl.org/au-research/vocabulary/anzsrc-for/2008/0801'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://purl.org/au-research/vocabulary/anzsrc-for/2008/0801'


     

    This table displays all metadata directly associated to this object as RDF triples.

    19 TRIPLES      7 PREDICATES      20 URIs      3 LITERALS

    Subject Predicate Object
    1 anzsrc-for:0801 sgo:sdDataset for_codes
    2 rdf:type rdfs:Resource
    3 skos:Concept
    4 skos:broader anzsrc-for:08
    5 skos:inScheme anzsrc-for:
    6 skos:narrower anzsrc-for:080101
    7 anzsrc-for:080102
    8 anzsrc-for:080103
    9 anzsrc-for:080104
    10 anzsrc-for:080105
    11 anzsrc-for:080106
    12 anzsrc-for:080107
    13 anzsrc-for:080108
    14 anzsrc-for:080109
    15 anzsrc-for:080110
    16 anzsrc-for:080111
    17 anzsrc-for:080199
    18 skos:notation 0801
    19 skos:prefLabel ARTIFICIAL INTELLIGENCE AND IMAGE PROCESSING
     




    Preview window. Press ESC to close (or click here)


    ...