Statistics


Ontology type: rdfs:Resource  | skos:Concept     


Concept Info

NAME

STATISTICS

Latest Publications max 20 shown

  • 2019-12 Towards A Next Generation of CORSIKA: A Framework for the Simulation of Particle Cascades in Astroparticle Physics in COMPUTING AND SOFTWARE FOR BIG SCIENCE
  • 2019-12 Spurious interaction as a result of categorization in BMC MEDICAL RESEARCH METHODOLOGY
  • 2019-12 A reliable numerical analysis for stochastic dengue epidemic model with incubation period of virus in ADVANCES IN DIFFERENCE EQUATIONS
  • 2019-12 Malaria parasite clearance rate regression: an R software package for a Bayesian hierarchical regression model in MALARIA JOURNAL
  • 2019-12 Likelihood-based random-effects meta-analysis with few studies: empirical and simulation studies in BMC MEDICAL RESEARCH METHODOLOGY
  • 2019-12 Avoiding hERG-liability in drug design via synergetic combinations of different (Q)SAR methodologies and data sources: a case study in an industrial setting in JOURNAL OF CHEMINFORMATICS
  • 2019-12 Integrating random walk and binary regression to identify novel miRNA-disease association in BMC BIOINFORMATICS
  • 2019-12 Attempting rigour and replicability in thematic analysis of qualitative research data; a case study of codebook development in BMC MEDICAL RESEARCH METHODOLOGY
  • 2019-12 Quantum speedup in the identification of cause–effect relations in NATURE COMMUNICATIONS
  • 2019-12 When the statistical MMN meets the physical MMN in SCIENTIFIC REPORTS
  • 2019-12 Improving estimation of puma (Puma concolor) population density: clustered camera-trapping, telemetry data, and generalized spatial mark-resight models in SCIENTIFIC REPORTS
  • 2019-12 An overview of using qualitative techniques to explore and define estimates of clinically important change on clinical outcome assessments in JOURNAL OF PATIENT-REPORTED OUTCOMES
  • 2019-12 Stochastic oscillations and dragon king avalanches in self-organized quasi-critical systems in SCIENTIFIC REPORTS
  • 2019-12 Gsslasso Cox: a Bayesian hierarchical model for predicting survival and detecting associated genes by incorporating pathway information in BMC BIOINFORMATICS
  • 2019-12 Clinical measurements obtained from point-of-care ultrasound images to assess acquisition skills in CRITICAL ULTRASOUND JOURNAL
  • 2019-12 Model selection may not be a mandatory step for phylogeny reconstruction in NATURE COMMUNICATIONS
  • 2019-12 A Pólya urn approach to information filtering in complex networks in NATURE COMMUNICATIONS
  • 2019-12 Regulatory strategies for rare diseases under current global regulatory statutes: a discussion with stakeholders in ORPHANET JOURNAL OF RARE DISEASES
  • 2019-12 Phase transitions and asymmetry between signal comprehension and production in biological communication in SCIENTIFIC REPORTS
  • 2019-12 Detecting amino acid preference shifts with codon-level mutation-selection mixture models in BMC EVOLUTIONARY BIOLOGY
  • JSON-LD is the canonical representation for SciGraph data.

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "sdDataset": "for_codes", 
        "skos:broader": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01"
          }
        ], 
        "skos:inScheme": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/"
          }
        ], 
        "skos:narrower": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/010405"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/010403"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/010404"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/010406"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/010499"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/010401"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/010402"
          }
        ], 
        "skos:notation": [
          {
            "@language": "en", 
            "@value": "0104"
          }
        ], 
        "skos:prefLabel": [
          {
            "@language": "en", 
            "@value": "STATISTICS"
          }
        ], 
        "type": [
          "http://www.w3.org/2004/02/skos/core#Concept", 
          "http://www.w3.org/2000/01/rdf-schema#Resource"
        ]
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://purl.org/au-research/vocabulary/anzsrc-for/2008/0104'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://purl.org/au-research/vocabulary/anzsrc-for/2008/0104'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://purl.org/au-research/vocabulary/anzsrc-for/2008/0104'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://purl.org/au-research/vocabulary/anzsrc-for/2008/0104'


     

    This table displays all metadata directly associated to this object as RDF triples.

    14 TRIPLES      7 PREDICATES      15 URIs      3 LITERALS

    Subject Predicate Object
    1 anzsrc-for:0104 sgo:sdDataset for_codes
    2 rdf:type rdfs:Resource
    3 skos:Concept
    4 skos:broader anzsrc-for:01
    5 skos:inScheme anzsrc-for:
    6 skos:narrower anzsrc-for:010401
    7 anzsrc-for:010402
    8 anzsrc-for:010403
    9 anzsrc-for:010404
    10 anzsrc-for:010405
    11 anzsrc-for:010406
    12 anzsrc-for:010499
    13 skos:notation 0104
    14 skos:prefLabel STATISTICS
     




    Preview window. Press ESC to close (or click here)


    ...