The Metadata Coverage Index (MCI): A standardized metric for quantifying database metadata richness View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-07-20

AUTHORS

Konstantinos Liolios, Lynn Schriml, Lynette Hirschman, Ioanna Pagani, Bahador Nosrat, Peter Sterk, Owen White, Philippe Rocca-Serra, Susanna-Assunta Sansone, Chris Taylor, Nikos C. Kyrpides, Dawn Field

ABSTRACT

Variability in the extent of the descriptions of data ('metadata') held in public repositories forces users to assess the quality of records individually, which rapidly becomes impractical. The scoring of records on the richness of their description provides a simple, objective proxy measure for quality that enables filtering that supports downstream analysis. Pivotally, such descriptions should spur on improvements. Here, we introduce such a measure - the 'Metadata Coverage Index' (MCI): the percentage of available fields actually filled in a record or description. MCI scores can be calculated across a database, for individual records or for their component parts (e.g., fields of interest). There are many potential uses for this simple metric: for example; to filter, rank or search for records; to assess the metadata availability of an ad hoc collection; to determine the frequency with which fields in a particular record type are filled, especially with respect to standards compliance; to assess the utility of specific tools and resources, and of data capture practice more generally; to prioritize records for further curation; to serve as performance metrics of funded projects; or to quantify the value added by curation. Here we demonstrate the utility of MCI scores using metadata from the Genomes Online Database (GOLD), including records compliant with the 'Minimum Information about a Genome Sequence' (MIGS) standard developed by the Genomic Standards Consortium. We discuss challenges and address the further application of MCI scores; to show improvements in annotation quality over time, to inform the work of standards bodies and repository providers on the usability and popularity of their products, and to assess and credit the work of curators. Such an index provides a step towards putting metadata capture practices and in the future, standards compliance, into a quantitative and objective framework. More... »

PAGES

438-447

Identifiers

URI

http://scigraph.springernature.com/pub.10.4056/sigs.2675953

DOI

http://dx.doi.org/10.4056/sigs.2675953

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026537128

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/23409217


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Joint Genome Institute", 
          "id": "https://www.grid.ac/institutes/grid.451309.a", 
          "name": [
            "Microbial Genomics and Metagenomic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liolios", 
        "givenName": "Konstantinos", 
        "id": "sg:person.01253041104.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253041104.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, Baltimore", 
          "id": "https://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schriml", 
        "givenName": "Lynn", 
        "id": "sg:person.01366305022.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366305022.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mitre (United States)", 
          "id": "https://www.grid.ac/institutes/grid.420015.2", 
          "name": [
            "The MITRE Corporation, MA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hirschman", 
        "givenName": "Lynette", 
        "id": "sg:person.0734743366.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734743366.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Genome Institute", 
          "id": "https://www.grid.ac/institutes/grid.451309.a", 
          "name": [
            "Microbial Genomics and Metagenomic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pagani", 
        "givenName": "Ioanna", 
        "id": "sg:person.01321154304.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321154304.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Genome Institute", 
          "id": "https://www.grid.ac/institutes/grid.451309.a", 
          "name": [
            "Microbial Genomics and Metagenomic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nosrat", 
        "givenName": "Bahador", 
        "id": "sg:person.01246635151.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246635151.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Wellcome Sanger Institute", 
          "id": "https://www.grid.ac/institutes/grid.10306.34", 
          "name": [
            "Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sterk", 
        "givenName": "Peter", 
        "id": "sg:person.01371201406.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371201406.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Maryland, Baltimore", 
          "id": "https://www.grid.ac/institutes/grid.411024.2", 
          "name": [
            "Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "White", 
        "givenName": "Owen", 
        "id": "sg:person.01021555477.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021555477.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "University of Oxford, Oxford e-Research Centre, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rocca-Serra", 
        "givenName": "Philippe", 
        "id": "sg:person.016542700247.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016542700247.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oxford", 
          "id": "https://www.grid.ac/institutes/grid.4991.5", 
          "name": [
            "University of Oxford, Oxford e-Research Centre, Oxford, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sansone", 
        "givenName": "Susanna-Assunta", 
        "id": "sg:person.0635417117.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635417117.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Bioinformatics Institute", 
          "id": "https://www.grid.ac/institutes/grid.225360.0", 
          "name": [
            "European Molecular Biology Laboratory (EMBL) Outstation, European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Cambridge, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Taylor", 
        "givenName": "Chris", 
        "id": "sg:person.011504406547.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504406547.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Genome Institute", 
          "id": "https://www.grid.ac/institutes/grid.451309.a", 
          "name": [
            "Microbial Genomics and Metagenomic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kyrpides", 
        "givenName": "Nikos C.", 
        "id": "sg:person.01230412614.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230412614.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre for Ecology and Hydrology", 
          "id": "https://www.grid.ac/institutes/grid.494924.6", 
          "name": [
            "University of Oxford, Oxford e-Research Centre, Oxford, UK", 
            "Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Field", 
        "givenName": "Dawn", 
        "id": "sg:person.01223211445.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223211445.99"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nbt.1411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002107134", 
          "https://doi.org/10.1038/nbt.1411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btq415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004926416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt.1823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005906569", 
          "https://doi.org/10.1038/nbt.1823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009485710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkm1021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013511342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013886837", 
          "https://doi.org/10.1038/nature08656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08656", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013886837", 
          "https://doi.org/10.1038/nature08656"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.1054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014202300", 
          "https://doi.org/10.1038/ng.1054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkr1100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016875501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/455047a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018445264", 
          "https://doi.org/10.1038/455047a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1180598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020795396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1180598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020795396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pbio.1001088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023892352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.096651.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034877175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.4056/sigs.25165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035592627", 
          "https://doi.org/10.4056/sigs.25165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nbt1360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038439506", 
          "https://doi.org/10.1038/nbt1360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.4056/sigs.34251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044742861", 
          "https://doi.org/10.4056/sigs.34251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkp848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045503771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/omi.2008.0a10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053138169"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-07-20", 
    "datePublishedReg": "2012-07-20", 
    "description": "Variability in the extent of the descriptions of data ('metadata') held in public repositories forces users to assess the quality of records individually, which rapidly becomes impractical. The scoring of records on the richness of their description provides a simple, objective proxy measure for quality that enables filtering that supports downstream analysis. Pivotally, such descriptions should spur on improvements. Here, we introduce such a measure - the 'Metadata Coverage Index' (MCI): the percentage of available fields actually filled in a record or description. MCI scores can be calculated across a database, for individual records or for their component parts (e.g., fields of interest). There are many potential uses for this simple metric: for example; to filter, rank or search for records; to assess the metadata availability of an ad hoc collection; to determine the frequency with which fields in a particular record type are filled, especially with respect to standards compliance; to assess the utility of specific tools and resources, and of data capture practice more generally; to prioritize records for further curation; to serve as performance metrics of funded projects; or to quantify the value added by curation. Here we demonstrate the utility of MCI scores using metadata from the Genomes Online Database (GOLD), including records compliant with the 'Minimum Information about a Genome Sequence' (MIGS) standard developed by the Genomic Standards Consortium. We discuss challenges and address the further application of MCI scores; to show improvements in annotation quality over time, to inform the work of standards bodies and repository providers on the usability and popularity of their products, and to assess and credit the work of curators. Such an index provides a step towards putting metadata capture practices and in the future, standards compliance, into a quantitative and objective framework.", 
    "genre": "research_article", 
    "id": "sg:pub.10.4056/sigs.2675953", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2771203", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2754951", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2691272", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2778509", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2779388", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1043441", 
        "issn": [
          "1944-3277"
        ], 
        "name": "Standards in Genomic Sciences", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "6"
      }
    ], 
    "name": "The Metadata Coverage Index (MCI): A standardized metric for quantifying database metadata richness", 
    "pagination": "438-447", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7e6ca60ac0fc5261afc02123fb848a578534e6d2d99708833213419f0fa78666"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "23409217"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101530505"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.4056/sigs.2675953"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026537128"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.4056/sigs.2675953", 
      "https://app.dimensions.ai/details/publication/pub.1026537128"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000546.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558968/"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.4056/sigs.2675953'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.4056/sigs.2675953'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.4056/sigs.2675953'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.4056/sigs.2675953'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      45 URIs      20 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.4056/sigs.2675953 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nc68f0bdbb88647acb0c1858be281a724
4 schema:citation sg:pub.10.1038/455047a
5 sg:pub.10.1038/nature08656
6 sg:pub.10.1038/nbt.1411
7 sg:pub.10.1038/nbt.1823
8 sg:pub.10.1038/nbt1360
9 sg:pub.10.1038/ng.1054
10 sg:pub.10.4056/sigs.25165
11 sg:pub.10.4056/sigs.34251
12 https://doi.org/10.1089/omi.2008.0a10
13 https://doi.org/10.1093/bioinformatics/btq415
14 https://doi.org/10.1093/nar/gkm1021
15 https://doi.org/10.1093/nar/gkm884
16 https://doi.org/10.1093/nar/gkp848
17 https://doi.org/10.1093/nar/gkr1100
18 https://doi.org/10.1101/gr.096651.109
19 https://doi.org/10.1126/science.1180598
20 https://doi.org/10.1371/journal.pbio.1001088
21 schema:datePublished 2012-07-20
22 schema:datePublishedReg 2012-07-20
23 schema:description Variability in the extent of the descriptions of data ('metadata') held in public repositories forces users to assess the quality of records individually, which rapidly becomes impractical. The scoring of records on the richness of their description provides a simple, objective proxy measure for quality that enables filtering that supports downstream analysis. Pivotally, such descriptions should spur on improvements. Here, we introduce such a measure - the 'Metadata Coverage Index' (MCI): the percentage of available fields actually filled in a record or description. MCI scores can be calculated across a database, for individual records or for their component parts (e.g., fields of interest). There are many potential uses for this simple metric: for example; to filter, rank or search for records; to assess the metadata availability of an ad hoc collection; to determine the frequency with which fields in a particular record type are filled, especially with respect to standards compliance; to assess the utility of specific tools and resources, and of data capture practice more generally; to prioritize records for further curation; to serve as performance metrics of funded projects; or to quantify the value added by curation. Here we demonstrate the utility of MCI scores using metadata from the Genomes Online Database (GOLD), including records compliant with the 'Minimum Information about a Genome Sequence' (MIGS) standard developed by the Genomic Standards Consortium. We discuss challenges and address the further application of MCI scores; to show improvements in annotation quality over time, to inform the work of standards bodies and repository providers on the usability and popularity of their products, and to assess and credit the work of curators. Such an index provides a step towards putting metadata capture practices and in the future, standards compliance, into a quantitative and objective framework.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N4a380997cdda4e818e07c88a98fba77d
28 N6708764117f740c38192a96a0adf03e8
29 sg:journal.1043441
30 schema:name The Metadata Coverage Index (MCI): A standardized metric for quantifying database metadata richness
31 schema:pagination 438-447
32 schema:productId N05c0ac2440434f7f911846e991720728
33 N22989088eb1440c289c9cadd0dffcd22
34 N8dc6dc868a5f49d3be08ea0091a1adb9
35 Nbe3e893a2bc641ebb2da78769fd0b7b2
36 Nd7e4f391ecca432bb824cf61a5f1ed8c
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026537128
38 https://doi.org/10.4056/sigs.2675953
39 schema:sdDatePublished 2019-04-10T13:24
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nf24f8ed12ad14c05b34be932017f52b6
42 schema:url http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3558968/
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N05c0ac2440434f7f911846e991720728 schema:name dimensions_id
47 schema:value pub.1026537128
48 rdf:type schema:PropertyValue
49 N185438e129514002935aa01c69c502c8 rdf:first sg:person.011504406547.14
50 rdf:rest N538415dcc21941b7ab8dfd642a89118b
51 N1edcbd4620a54c23abafee3bdb32eab8 rdf:first sg:person.016542700247.80
52 rdf:rest N77d9ac63eecd43be85064d47db2739c2
53 N22989088eb1440c289c9cadd0dffcd22 schema:name readcube_id
54 schema:value 7e6ca60ac0fc5261afc02123fb848a578534e6d2d99708833213419f0fa78666
55 rdf:type schema:PropertyValue
56 N40800f75c503437db566963fabffb44b rdf:first sg:person.0734743366.53
57 rdf:rest N6d1a1ff90f424f9daabba78414ef38d6
58 N4a380997cdda4e818e07c88a98fba77d schema:volumeNumber 6
59 rdf:type schema:PublicationVolume
60 N538415dcc21941b7ab8dfd642a89118b rdf:first sg:person.01230412614.56
61 rdf:rest N85d94b72d2f44d80b34f984a3432e0a4
62 N5c40ec2814164c02a87233d090df2e9c rdf:first sg:person.01366305022.56
63 rdf:rest N40800f75c503437db566963fabffb44b
64 N5fe88a1fff9b483f9b3d5a712f77bde5 rdf:first sg:person.01371201406.28
65 rdf:rest N727d6e4c292f4d0c8cf0bc3a78baab41
66 N6708764117f740c38192a96a0adf03e8 schema:issueNumber 3
67 rdf:type schema:PublicationIssue
68 N6d1a1ff90f424f9daabba78414ef38d6 rdf:first sg:person.01321154304.05
69 rdf:rest Ndefd9d35d96a4dfba0c73dda6e06cda1
70 N727d6e4c292f4d0c8cf0bc3a78baab41 rdf:first sg:person.01021555477.04
71 rdf:rest N1edcbd4620a54c23abafee3bdb32eab8
72 N77d9ac63eecd43be85064d47db2739c2 rdf:first sg:person.0635417117.92
73 rdf:rest N185438e129514002935aa01c69c502c8
74 N85d94b72d2f44d80b34f984a3432e0a4 rdf:first sg:person.01223211445.99
75 rdf:rest rdf:nil
76 N8dc6dc868a5f49d3be08ea0091a1adb9 schema:name doi
77 schema:value 10.4056/sigs.2675953
78 rdf:type schema:PropertyValue
79 Nbe3e893a2bc641ebb2da78769fd0b7b2 schema:name pubmed_id
80 schema:value 23409217
81 rdf:type schema:PropertyValue
82 Nc68f0bdbb88647acb0c1858be281a724 rdf:first sg:person.01253041104.20
83 rdf:rest N5c40ec2814164c02a87233d090df2e9c
84 Nd7e4f391ecca432bb824cf61a5f1ed8c schema:name nlm_unique_id
85 schema:value 101530505
86 rdf:type schema:PropertyValue
87 Ndefd9d35d96a4dfba0c73dda6e06cda1 rdf:first sg:person.01246635151.60
88 rdf:rest N5fe88a1fff9b483f9b3d5a712f77bde5
89 Nf24f8ed12ad14c05b34be932017f52b6 schema:name Springer Nature - SN SciGraph project
90 rdf:type schema:Organization
91 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
92 schema:name Information and Computing Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information Systems
96 rdf:type schema:DefinedTerm
97 sg:grant.2691272 http://pending.schema.org/fundedItem sg:pub.10.4056/sigs.2675953
98 rdf:type schema:MonetaryGrant
99 sg:grant.2754951 http://pending.schema.org/fundedItem sg:pub.10.4056/sigs.2675953
100 rdf:type schema:MonetaryGrant
101 sg:grant.2771203 http://pending.schema.org/fundedItem sg:pub.10.4056/sigs.2675953
102 rdf:type schema:MonetaryGrant
103 sg:grant.2778509 http://pending.schema.org/fundedItem sg:pub.10.4056/sigs.2675953
104 rdf:type schema:MonetaryGrant
105 sg:grant.2779388 http://pending.schema.org/fundedItem sg:pub.10.4056/sigs.2675953
106 rdf:type schema:MonetaryGrant
107 sg:journal.1043441 schema:issn 1944-3277
108 schema:name Standards in Genomic Sciences
109 rdf:type schema:Periodical
110 sg:person.01021555477.04 schema:affiliation https://www.grid.ac/institutes/grid.411024.2
111 schema:familyName White
112 schema:givenName Owen
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021555477.04
114 rdf:type schema:Person
115 sg:person.011504406547.14 schema:affiliation https://www.grid.ac/institutes/grid.225360.0
116 schema:familyName Taylor
117 schema:givenName Chris
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011504406547.14
119 rdf:type schema:Person
120 sg:person.01223211445.99 schema:affiliation https://www.grid.ac/institutes/grid.494924.6
121 schema:familyName Field
122 schema:givenName Dawn
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01223211445.99
124 rdf:type schema:Person
125 sg:person.01230412614.56 schema:affiliation https://www.grid.ac/institutes/grid.451309.a
126 schema:familyName Kyrpides
127 schema:givenName Nikos C.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230412614.56
129 rdf:type schema:Person
130 sg:person.01246635151.60 schema:affiliation https://www.grid.ac/institutes/grid.451309.a
131 schema:familyName Nosrat
132 schema:givenName Bahador
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01246635151.60
134 rdf:type schema:Person
135 sg:person.01253041104.20 schema:affiliation https://www.grid.ac/institutes/grid.451309.a
136 schema:familyName Liolios
137 schema:givenName Konstantinos
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01253041104.20
139 rdf:type schema:Person
140 sg:person.01321154304.05 schema:affiliation https://www.grid.ac/institutes/grid.451309.a
141 schema:familyName Pagani
142 schema:givenName Ioanna
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321154304.05
144 rdf:type schema:Person
145 sg:person.01366305022.56 schema:affiliation https://www.grid.ac/institutes/grid.411024.2
146 schema:familyName Schriml
147 schema:givenName Lynn
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366305022.56
149 rdf:type schema:Person
150 sg:person.01371201406.28 schema:affiliation https://www.grid.ac/institutes/grid.10306.34
151 schema:familyName Sterk
152 schema:givenName Peter
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371201406.28
154 rdf:type schema:Person
155 sg:person.016542700247.80 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
156 schema:familyName Rocca-Serra
157 schema:givenName Philippe
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016542700247.80
159 rdf:type schema:Person
160 sg:person.0635417117.92 schema:affiliation https://www.grid.ac/institutes/grid.4991.5
161 schema:familyName Sansone
162 schema:givenName Susanna-Assunta
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635417117.92
164 rdf:type schema:Person
165 sg:person.0734743366.53 schema:affiliation https://www.grid.ac/institutes/grid.420015.2
166 schema:familyName Hirschman
167 schema:givenName Lynette
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734743366.53
169 rdf:type schema:Person
170 sg:pub.10.1038/455047a schema:sameAs https://app.dimensions.ai/details/publication/pub.1018445264
171 https://doi.org/10.1038/455047a
172 rdf:type schema:CreativeWork
173 sg:pub.10.1038/nature08656 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013886837
174 https://doi.org/10.1038/nature08656
175 rdf:type schema:CreativeWork
176 sg:pub.10.1038/nbt.1411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002107134
177 https://doi.org/10.1038/nbt.1411
178 rdf:type schema:CreativeWork
179 sg:pub.10.1038/nbt.1823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005906569
180 https://doi.org/10.1038/nbt.1823
181 rdf:type schema:CreativeWork
182 sg:pub.10.1038/nbt1360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038439506
183 https://doi.org/10.1038/nbt1360
184 rdf:type schema:CreativeWork
185 sg:pub.10.1038/ng.1054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014202300
186 https://doi.org/10.1038/ng.1054
187 rdf:type schema:CreativeWork
188 sg:pub.10.4056/sigs.25165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035592627
189 https://doi.org/10.4056/sigs.25165
190 rdf:type schema:CreativeWork
191 sg:pub.10.4056/sigs.34251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044742861
192 https://doi.org/10.4056/sigs.34251
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1089/omi.2008.0a10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053138169
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1093/bioinformatics/btq415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004926416
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1093/nar/gkm1021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013511342
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1093/nar/gkm884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009485710
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1093/nar/gkp848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045503771
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1093/nar/gkr1100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016875501
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1101/gr.096651.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034877175
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1126/science.1180598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020795396
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1371/journal.pbio.1001088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023892352
211 rdf:type schema:CreativeWork
212 https://www.grid.ac/institutes/grid.10306.34 schema:alternateName Wellcome Sanger Institute
213 schema:name Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, UK
214 rdf:type schema:Organization
215 https://www.grid.ac/institutes/grid.225360.0 schema:alternateName European Bioinformatics Institute
216 schema:name European Molecular Biology Laboratory (EMBL) Outstation, European Bioinformatics Institute (EBI), Wellcome Trust Genome Campus, Cambridge, UK
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.411024.2 schema:alternateName University of Maryland, Baltimore
219 schema:name Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
220 rdf:type schema:Organization
221 https://www.grid.ac/institutes/grid.420015.2 schema:alternateName Mitre (United States)
222 schema:name The MITRE Corporation, MA, USA
223 rdf:type schema:Organization
224 https://www.grid.ac/institutes/grid.451309.a schema:alternateName Joint Genome Institute
225 schema:name Microbial Genomics and Metagenomic Super Program, Department of Energy Joint Genome Institute, Walnut Creek, CA, USA
226 rdf:type schema:Organization
227 https://www.grid.ac/institutes/grid.494924.6 schema:alternateName Centre for Ecology and Hydrology
228 schema:name Centre for Ecology & Hydrology, Wallingford, Oxfordshire, UK
229 University of Oxford, Oxford e-Research Centre, Oxford, UK
230 rdf:type schema:Organization
231 https://www.grid.ac/institutes/grid.4991.5 schema:alternateName University of Oxford
232 schema:name University of Oxford, Oxford e-Research Centre, Oxford, UK
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...