Temperature Influence on Erythrocytes’ Threshold Limit for Hemolysis in Shear Flow Based on the Immersed Boundary-Lattice Boltzmann Method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Zhong Yun, Chuang Xiang, Liang Wang

ABSTRACT

The temperature of blood pumps and other left ventricular assistance devices (LVAD) increases during operation due to the effects of the electromagnetic drive and mechanical work. The blood is heated when passing through an LVAD. Temperature can influence erythrocytes’ mechanical properties and erythrocytes’ threshold shear stress for hemolysis in shear flow. A nonlinear two-dimensional membrane model was introduced based on the linear spring network model and non-linear worm-like-chains (WLC) model. The simulation of erythrocytes in shear flow was performed in the framework of the immersed boundary-lattice Boltzmann method (IB-LBM). When the shear stress was set to the often-cited threshold for hemolysis of 400 Pa and the temperature was 37°C, the free energy change of the erythrocyte membrane was calculated to be 3.5 × 10 −15J, which was defined as the threshold value of erythrocytes’ membrane energy change for hemolysis. As the temperature rose to 39°C, 41°C and 43°C, the shear stress varied from 200 to 400 Pa, the free energy changed, and the shape parameters were studied. By comparing the threshold energy changes, we found the threshold shear stress values at 39°C, 41°C and 43°C to be 340, 315 and 295 Pa, respectively. Whether red blood cells (RBCs) are damaged when passing through an LVAD can be determined according to these data. This work should provide a basis for LVAD design and optimization. More... »

PAGES

607-613

Identifiers

URI

http://scigraph.springernature.com/pub.10.3938/jkps.74.607

DOI

http://dx.doi.org/10.3938/jkps.74.607

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112965762


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Mechanical and Electrical Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yun", 
        "givenName": "Zhong", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Mechanical and Electrical Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiang", 
        "givenName": "Chuang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central South University", 
          "id": "https://www.grid.ac/institutes/grid.216417.7", 
          "name": [
            "School of Mechanical and Electrical Engineering, Central South University, 410083, Changsha, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Liang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/aor.12328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001391575"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fld.3939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004067856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-85729-455-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005601359", 
          "https://doi.org/10.1007/978-0-85729-455-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-85729-455-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005601359", 
          "https://doi.org/10.1007/978-0-85729-455-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.athoracsur.2014.02.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007232101"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mvr.2011.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010772119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2012.08.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015329544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfluidstructs.2014.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016131988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.amjcard.2015.02.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016465793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10741-012-9303-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017176442", 
          "https://doi.org/10.1007/s10741-012-9303-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/aor.12499", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017729268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10047-016-0914-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023084811", 
          "https://doi.org/10.1007/s10047-016-0914-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10047-016-0914-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023084811", 
          "https://doi.org/10.1007/s10047-016-0914-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(79)85239-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028122528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.camwa.2010.03.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030700680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fld.3764", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035302434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0026-2862(72)90069-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037849056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tmrv.2015.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038087252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rsta.2013.0389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039577831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10047-007-0374-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041353558", 
          "https://doi.org/10.1007/s10047-007-0374-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10047-007-0374-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041353558", 
          "https://doi.org/10.1007/s10047-007-0374-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s13246-013-0225-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045420488", 
          "https://doi.org/10.1007/s13246-013-0225-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0021-9290(01)00084-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046627353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/ans.13368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047951082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4879418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051162217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.011910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.011910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0038-1657744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079461594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/bir-1984-21605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1081639182"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "The temperature of blood pumps and other left ventricular assistance devices (LVAD) increases during operation due to the effects of the electromagnetic drive and mechanical work. The blood is heated when passing through an LVAD. Temperature can influence erythrocytes\u2019 mechanical properties and erythrocytes\u2019 threshold shear stress for hemolysis in shear flow. A nonlinear two-dimensional membrane model was introduced based on the linear spring network model and non-linear worm-like-chains (WLC) model. The simulation of erythrocytes in shear flow was performed in the framework of the immersed boundary-lattice Boltzmann method (IB-LBM). When the shear stress was set to the often-cited threshold for hemolysis of 400 Pa and the temperature was 37\u00b0C, the free energy change of the erythrocyte membrane was calculated to be 3.5 \u00d7 10 \u221215J, which was defined as the threshold value of erythrocytes\u2019 membrane energy change for hemolysis. As the temperature rose to 39\u00b0C, 41\u00b0C and 43\u00b0C, the shear stress varied from 200 to 400 Pa, the free energy changed, and the shape parameters were studied. By comparing the threshold energy changes, we found the threshold shear stress values at 39\u00b0C, 41\u00b0C and 43\u00b0C to be 340, 315 and 295 Pa, respectively. Whether red blood cells (RBCs) are damaged when passing through an LVAD can be determined according to these data. This work should provide a basis for LVAD design and optimization.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3938/jkps.74.607", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042000", 
        "issn": [
          "0374-4884", 
          "1976-8524"
        ], 
        "name": "Journal of the Korean Physical Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "name": "Temperature Influence on Erythrocytes\u2019 Threshold Limit for Hemolysis in Shear Flow Based on the Immersed Boundary-Lattice Boltzmann Method", 
    "pagination": "607-613", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a98047e23a1fc326b61c5789665fbf6df78aa07f2a48c53201f7d426d111aeec"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3938/jkps.74.607"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112965762"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3938/jkps.74.607", 
      "https://app.dimensions.ai/details/publication/pub.1112965762"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71680_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3938%2Fjkps.74.607"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3938/jkps.74.607'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3938/jkps.74.607'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3938/jkps.74.607'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3938/jkps.74.607'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3938/jkps.74.607 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N5bbe2f9250e144b3bb8879bf76422f7f
4 schema:citation sg:pub.10.1007/978-0-85729-455-5
5 sg:pub.10.1007/s10047-007-0374-3
6 sg:pub.10.1007/s10047-016-0914-9
7 sg:pub.10.1007/s10741-012-9303-5
8 sg:pub.10.1007/s13246-013-0225-x
9 https://doi.org/10.1002/fld.3764
10 https://doi.org/10.1002/fld.3939
11 https://doi.org/10.1016/0026-2862(72)90069-6
12 https://doi.org/10.1016/j.amjcard.2015.02.059
13 https://doi.org/10.1016/j.athoracsur.2014.02.041
14 https://doi.org/10.1016/j.camwa.2010.03.057
15 https://doi.org/10.1016/j.jbiomech.2012.08.009
16 https://doi.org/10.1016/j.jfluidstructs.2014.12.003
17 https://doi.org/10.1016/j.mvr.2011.05.006
18 https://doi.org/10.1016/j.tmrv.2015.03.002
19 https://doi.org/10.1016/s0006-3495(79)85239-x
20 https://doi.org/10.1016/s0021-9290(01)00084-7
21 https://doi.org/10.1055/s-0038-1657744
22 https://doi.org/10.1063/1.4879418
23 https://doi.org/10.1098/rsta.2013.0389
24 https://doi.org/10.1103/physreve.81.011910
25 https://doi.org/10.1111/ans.13368
26 https://doi.org/10.1111/aor.12328
27 https://doi.org/10.1111/aor.12499
28 https://doi.org/10.3233/bir-1984-21605
29 schema:datePublished 2019-03
30 schema:datePublishedReg 2019-03-01
31 schema:description The temperature of blood pumps and other left ventricular assistance devices (LVAD) increases during operation due to the effects of the electromagnetic drive and mechanical work. The blood is heated when passing through an LVAD. Temperature can influence erythrocytes’ mechanical properties and erythrocytes’ threshold shear stress for hemolysis in shear flow. A nonlinear two-dimensional membrane model was introduced based on the linear spring network model and non-linear worm-like-chains (WLC) model. The simulation of erythrocytes in shear flow was performed in the framework of the immersed boundary-lattice Boltzmann method (IB-LBM). When the shear stress was set to the often-cited threshold for hemolysis of 400 Pa and the temperature was 37°C, the free energy change of the erythrocyte membrane was calculated to be 3.5 × 10 −15J, which was defined as the threshold value of erythrocytes’ membrane energy change for hemolysis. As the temperature rose to 39°C, 41°C and 43°C, the shear stress varied from 200 to 400 Pa, the free energy changed, and the shape parameters were studied. By comparing the threshold energy changes, we found the threshold shear stress values at 39°C, 41°C and 43°C to be 340, 315 and 295 Pa, respectively. Whether red blood cells (RBCs) are damaged when passing through an LVAD can be determined according to these data. This work should provide a basis for LVAD design and optimization.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N6c31143938144de0a647535f7e39027a
36 Nfd5b75b04d94450b82d0bd0bcd76cd9a
37 sg:journal.1042000
38 schema:name Temperature Influence on Erythrocytes’ Threshold Limit for Hemolysis in Shear Flow Based on the Immersed Boundary-Lattice Boltzmann Method
39 schema:pagination 607-613
40 schema:productId Nbef4c54dc8574f1f825e9666a14927b0
41 Nc5a8c47a580e4dab8354f17c47027308
42 Nce956602fe7549878b410dd4ee876fc7
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112965762
44 https://doi.org/10.3938/jkps.74.607
45 schema:sdDatePublished 2019-04-11T12:58
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher Ne1517326899e4aeabc76b6429ccd34cb
48 schema:url https://link.springer.com/10.3938%2Fjkps.74.607
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N29c4a16147b54215bb04172afc10777b schema:affiliation https://www.grid.ac/institutes/grid.216417.7
53 schema:familyName Xiang
54 schema:givenName Chuang
55 rdf:type schema:Person
56 N5bbe2f9250e144b3bb8879bf76422f7f rdf:first Nd0ff556b843542d2a53e705aa690175c
57 rdf:rest Nd62e138114664ca4b0704bcf385c90c9
58 N6c31143938144de0a647535f7e39027a schema:issueNumber 6
59 rdf:type schema:PublicationIssue
60 N708f6cc6e1bb4899830989aeb0307f28 schema:affiliation https://www.grid.ac/institutes/grid.216417.7
61 schema:familyName Wang
62 schema:givenName Liang
63 rdf:type schema:Person
64 Na85375378d8643169c5bf87612efda32 rdf:first N708f6cc6e1bb4899830989aeb0307f28
65 rdf:rest rdf:nil
66 Nbef4c54dc8574f1f825e9666a14927b0 schema:name doi
67 schema:value 10.3938/jkps.74.607
68 rdf:type schema:PropertyValue
69 Nc5a8c47a580e4dab8354f17c47027308 schema:name dimensions_id
70 schema:value pub.1112965762
71 rdf:type schema:PropertyValue
72 Nce956602fe7549878b410dd4ee876fc7 schema:name readcube_id
73 schema:value a98047e23a1fc326b61c5789665fbf6df78aa07f2a48c53201f7d426d111aeec
74 rdf:type schema:PropertyValue
75 Nd0ff556b843542d2a53e705aa690175c schema:affiliation https://www.grid.ac/institutes/grid.216417.7
76 schema:familyName Yun
77 schema:givenName Zhong
78 rdf:type schema:Person
79 Nd62e138114664ca4b0704bcf385c90c9 rdf:first N29c4a16147b54215bb04172afc10777b
80 rdf:rest Na85375378d8643169c5bf87612efda32
81 Ne1517326899e4aeabc76b6429ccd34cb schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 Nfd5b75b04d94450b82d0bd0bcd76cd9a schema:volumeNumber 74
84 rdf:type schema:PublicationVolume
85 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
86 schema:name Engineering
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
89 schema:name Materials Engineering
90 rdf:type schema:DefinedTerm
91 sg:journal.1042000 schema:issn 0374-4884
92 1976-8524
93 schema:name Journal of the Korean Physical Society
94 rdf:type schema:Periodical
95 sg:pub.10.1007/978-0-85729-455-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005601359
96 https://doi.org/10.1007/978-0-85729-455-5
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s10047-007-0374-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041353558
99 https://doi.org/10.1007/s10047-007-0374-3
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s10047-016-0914-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023084811
102 https://doi.org/10.1007/s10047-016-0914-9
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s10741-012-9303-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017176442
105 https://doi.org/10.1007/s10741-012-9303-5
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s13246-013-0225-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045420488
108 https://doi.org/10.1007/s13246-013-0225-x
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/fld.3764 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035302434
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1002/fld.3939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004067856
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0026-2862(72)90069-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037849056
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.amjcard.2015.02.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016465793
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.athoracsur.2014.02.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007232101
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.camwa.2010.03.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030700680
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jbiomech.2012.08.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015329544
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jfluidstructs.2014.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016131988
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.mvr.2011.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010772119
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.tmrv.2015.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038087252
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0006-3495(79)85239-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028122528
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0021-9290(01)00084-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046627353
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1055/s-0038-1657744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079461594
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.4879418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051162217
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1098/rsta.2013.0389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039577831
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physreve.81.011910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060740011
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1111/ans.13368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047951082
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1111/aor.12328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001391575
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1111/aor.12499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017729268
147 rdf:type schema:CreativeWork
148 https://doi.org/10.3233/bir-1984-21605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1081639182
149 rdf:type schema:CreativeWork
150 https://www.grid.ac/institutes/grid.216417.7 schema:alternateName Central South University
151 schema:name School of Mechanical and Electrical Engineering, Central South University, 410083, Changsha, China
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...