Crystal Phase Control of ε-Ga2O3 Fabricated using by Metal-Organic Chemical Vapor Deposition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

Sang Hun Park, Han Sol Lee, Hyung Soo Ahn, Min Yang

ABSTRACT

ε-Ga2O3 thin films were grown on (0001) sapphire, (0001) GaN, and a low-temperature buffer layer at different temperatures and flow rates of bubbled H2O (oxygen source) using trimethylgallium and H2O as precursors by using atmospheric-pressure metal-organic chemical vapor deposition. Due to the atmospheric pressure conditions, most of the Ga2O3 thin films were not grown in a pure ε-phase, but contain a small portion of the β-phase. The crystal structure, crystal quality, phase ratio, and surface morphology were analyzed by using X-ray diffraction, rocking curve measurements, and field-emission scanning electron microscopy. A certain minimum H2O flow rate was required to form ε-Ga2O3 thin films, and the optimal growth temperature for ε-Ga2O3 was 650°C. The β-phase fraction of the mixed-phase (ε + β) thin films was dominant at temperatures higher than 650 °C. The crystallinities and phase compositions of the thin films changed with the flow rate of H2O. Nearly single-crystalline Ga2O3 thin films were successfully grown on GaN and sapphire, but not on a low-temperature buffer layer. Hexagonally shaped Ga2O3 islands become aligned in an ordered direction that correlated to the substrate’s orientation during the initial stage of the growth and coalesced to complete a two-dimensional layer as the growth went on. More... »

PAGES

502-507

Identifiers

URI

http://scigraph.springernature.com/pub.10.3938/jkps.74.502

DOI

http://dx.doi.org/10.3938/jkps.74.502

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112678709


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea Maritime and Ocean University", 
          "id": "https://www.grid.ac/institutes/grid.258690.0", 
          "name": [
            "Department of Materials Engineering, Korea Maritime and Ocean University, 49112, Busan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "Sang Hun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Maritime and Ocean University", 
          "id": "https://www.grid.ac/institutes/grid.258690.0", 
          "name": [
            "Department of Materials Engineering, Korea Maritime and Ocean University, 49112, Busan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Han Sol", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Maritime and Ocean University", 
          "id": "https://www.grid.ac/institutes/grid.258690.0", 
          "name": [
            "Department of Materials Engineering, Korea Maritime and Ocean University, 49112, Busan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Hyung Soo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Maritime and Ocean University", 
          "id": "https://www.grid.ac/institutes/grid.258690.0", 
          "name": [
            "Department of Materials Engineering, Korea Maritime and Ocean University, 49112, Busan, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Min", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0034-4885/72/3/036502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003603692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.201532599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010658990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4236/jamp.2014.212129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014774473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4922814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017619366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/chem.201203359", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019640838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5ce01106j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028629226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/19/34/346211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030433426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-4005(03)00171-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032940471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-4005(03)00171-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032940471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2016.03.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050507002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4950867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050812778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.inorgchem.6b02244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055094554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01123a039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055770703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1731237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057797642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2432946", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057856858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4929417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058095417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/31/3/034001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059063872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.140.a316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060431581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.140.a316", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060431581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/apex.8.055501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073832268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c7ce00123a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083869040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2017.05.241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085724756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/jjap.56.078004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090252550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2017.11.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092729275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.cgd.7b01576", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099738198"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "\u03b5-Ga2O3 thin films were grown on (0001) sapphire, (0001) GaN, and a low-temperature buffer layer at different temperatures and flow rates of bubbled H2O (oxygen source) using trimethylgallium and H2O as precursors by using atmospheric-pressure metal-organic chemical vapor deposition. Due to the atmospheric pressure conditions, most of the Ga2O3 thin films were not grown in a pure \u03b5-phase, but contain a small portion of the \u03b2-phase. The crystal structure, crystal quality, phase ratio, and surface morphology were analyzed by using X-ray diffraction, rocking curve measurements, and field-emission scanning electron microscopy. A certain minimum H2O flow rate was required to form \u03b5-Ga2O3 thin films, and the optimal growth temperature for \u03b5-Ga2O3 was 650\u00b0C. The \u03b2-phase fraction of the mixed-phase (\u03b5 + \u03b2) thin films was dominant at temperatures higher than 650 \u00b0C. The crystallinities and phase compositions of the thin films changed with the flow rate of H2O. Nearly single-crystalline Ga2O3 thin films were successfully grown on GaN and sapphire, but not on a low-temperature buffer layer. Hexagonally shaped Ga2O3 islands become aligned in an ordered direction that correlated to the substrate\u2019s orientation during the initial stage of the growth and coalesced to complete a two-dimensional layer as the growth went on.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3938/jkps.74.502", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042000", 
        "issn": [
          "0374-4884", 
          "1976-8524"
        ], 
        "name": "Journal of the Korean Physical Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "74"
      }
    ], 
    "name": "Crystal Phase Control of \u03b5-Ga2O3 Fabricated using by Metal-Organic Chemical Vapor Deposition", 
    "pagination": "502-507", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "eab841186e6621aab7af3da332004ad67eaa08b19747134fb6c284a942b33034"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3938/jkps.74.502"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112678709"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3938/jkps.74.502", 
      "https://app.dimensions.ai/details/publication/pub.1112678709"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000355_0000000355/records_52997_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3938%2Fjkps.74.502"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3938/jkps.74.502'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3938/jkps.74.502'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3938/jkps.74.502'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3938/jkps.74.502'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3938/jkps.74.502 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nb7839ba314634b5da2d7d28fbf2d406d
4 schema:citation https://doi.org/10.1002/chem.201203359
5 https://doi.org/10.1002/pssa.201532599
6 https://doi.org/10.1016/j.apsusc.2017.05.241
7 https://doi.org/10.1016/j.jcrysgro.2016.03.013
8 https://doi.org/10.1016/j.matchemphys.2017.11.023
9 https://doi.org/10.1016/s0925-4005(03)00171-0
10 https://doi.org/10.1021/acs.cgd.7b01576
11 https://doi.org/10.1021/acs.inorgchem.6b02244
12 https://doi.org/10.1021/ja01123a039
13 https://doi.org/10.1039/c5ce01106j
14 https://doi.org/10.1039/c7ce00123a
15 https://doi.org/10.1063/1.1731237
16 https://doi.org/10.1063/1.2432946
17 https://doi.org/10.1063/1.4922814
18 https://doi.org/10.1063/1.4929417
19 https://doi.org/10.1063/1.4950867
20 https://doi.org/10.1088/0034-4885/72/3/036502
21 https://doi.org/10.1088/0268-1242/31/3/034001
22 https://doi.org/10.1088/0953-8984/19/34/346211
23 https://doi.org/10.1103/physrev.140.a316
24 https://doi.org/10.4236/jamp.2014.212129
25 https://doi.org/10.7567/apex.8.055501
26 https://doi.org/10.7567/jjap.56.078004
27 schema:datePublished 2019-03
28 schema:datePublishedReg 2019-03-01
29 schema:description ε-Ga2O3 thin films were grown on (0001) sapphire, (0001) GaN, and a low-temperature buffer layer at different temperatures and flow rates of bubbled H2O (oxygen source) using trimethylgallium and H2O as precursors by using atmospheric-pressure metal-organic chemical vapor deposition. Due to the atmospheric pressure conditions, most of the Ga2O3 thin films were not grown in a pure ε-phase, but contain a small portion of the β-phase. The crystal structure, crystal quality, phase ratio, and surface morphology were analyzed by using X-ray diffraction, rocking curve measurements, and field-emission scanning electron microscopy. A certain minimum H2O flow rate was required to form ε-Ga2O3 thin films, and the optimal growth temperature for ε-Ga2O3 was 650°C. The β-phase fraction of the mixed-phase (ε + β) thin films was dominant at temperatures higher than 650 °C. The crystallinities and phase compositions of the thin films changed with the flow rate of H2O. Nearly single-crystalline Ga2O3 thin films were successfully grown on GaN and sapphire, but not on a low-temperature buffer layer. Hexagonally shaped Ga2O3 islands become aligned in an ordered direction that correlated to the substrate’s orientation during the initial stage of the growth and coalesced to complete a two-dimensional layer as the growth went on.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree false
33 schema:isPartOf N705a488d766149bea679ad5e2d9fcb5a
34 Nd797b19bf83344e7be88d83b736254ab
35 sg:journal.1042000
36 schema:name Crystal Phase Control of ε-Ga2O3 Fabricated using by Metal-Organic Chemical Vapor Deposition
37 schema:pagination 502-507
38 schema:productId N1d077606afbc4633a49992125459507a
39 N3886dba626fa4e43937089aaefd6767d
40 N77e2039a35d549388a0e3cc4dac49e73
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112678709
42 https://doi.org/10.3938/jkps.74.502
43 schema:sdDatePublished 2019-04-11T11:23
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Na80055e0ada94d10bbf02492007d3cca
46 schema:url https://link.springer.com/10.3938%2Fjkps.74.502
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N1465b9e761714045b575b9ea08e8e17f schema:affiliation https://www.grid.ac/institutes/grid.258690.0
51 schema:familyName Park
52 schema:givenName Sang Hun
53 rdf:type schema:Person
54 N1d077606afbc4633a49992125459507a schema:name readcube_id
55 schema:value eab841186e6621aab7af3da332004ad67eaa08b19747134fb6c284a942b33034
56 rdf:type schema:PropertyValue
57 N3886dba626fa4e43937089aaefd6767d schema:name dimensions_id
58 schema:value pub.1112678709
59 rdf:type schema:PropertyValue
60 N60ca67ade26a4e3baa6a19223177d0f9 schema:affiliation https://www.grid.ac/institutes/grid.258690.0
61 schema:familyName Yang
62 schema:givenName Min
63 rdf:type schema:Person
64 N705a488d766149bea679ad5e2d9fcb5a schema:volumeNumber 74
65 rdf:type schema:PublicationVolume
66 N77e2039a35d549388a0e3cc4dac49e73 schema:name doi
67 schema:value 10.3938/jkps.74.502
68 rdf:type schema:PropertyValue
69 Na0fa6ca0fe4742e2b1fb07b17da5cd6f rdf:first Nd3f8308e13304dfc8f3fbf7b49e5b8fe
70 rdf:rest Nb9c3c9a6ab1641ce90dcfb9daa13c0b9
71 Na80055e0ada94d10bbf02492007d3cca schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nb7839ba314634b5da2d7d28fbf2d406d rdf:first N1465b9e761714045b575b9ea08e8e17f
74 rdf:rest Na0fa6ca0fe4742e2b1fb07b17da5cd6f
75 Nb9c3c9a6ab1641ce90dcfb9daa13c0b9 rdf:first Ne0850879a52e436bbf22f77293578c0f
76 rdf:rest Necbcc85e96b54629bf643cbb85d370a4
77 Nd3f8308e13304dfc8f3fbf7b49e5b8fe schema:affiliation https://www.grid.ac/institutes/grid.258690.0
78 schema:familyName Lee
79 schema:givenName Han Sol
80 rdf:type schema:Person
81 Nd797b19bf83344e7be88d83b736254ab schema:issueNumber 5
82 rdf:type schema:PublicationIssue
83 Ne0850879a52e436bbf22f77293578c0f schema:affiliation https://www.grid.ac/institutes/grid.258690.0
84 schema:familyName Ahn
85 schema:givenName Hyung Soo
86 rdf:type schema:Person
87 Necbcc85e96b54629bf643cbb85d370a4 rdf:first N60ca67ade26a4e3baa6a19223177d0f9
88 rdf:rest rdf:nil
89 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
90 schema:name Chemical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
93 schema:name Physical Chemistry (incl. Structural)
94 rdf:type schema:DefinedTerm
95 sg:journal.1042000 schema:issn 0374-4884
96 1976-8524
97 schema:name Journal of the Korean Physical Society
98 rdf:type schema:Periodical
99 https://doi.org/10.1002/chem.201203359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019640838
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1002/pssa.201532599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010658990
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.apsusc.2017.05.241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085724756
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.jcrysgro.2016.03.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050507002
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.matchemphys.2017.11.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092729275
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s0925-4005(03)00171-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032940471
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1021/acs.cgd.7b01576 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099738198
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1021/acs.inorgchem.6b02244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055094554
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/ja01123a039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055770703
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1039/c5ce01106j schema:sameAs https://app.dimensions.ai/details/publication/pub.1028629226
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1039/c7ce00123a schema:sameAs https://app.dimensions.ai/details/publication/pub.1083869040
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.1731237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057797642
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.2432946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057856858
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.4922814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017619366
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.4929417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058095417
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.4950867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050812778
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1088/0034-4885/72/3/036502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003603692
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1088/0268-1242/31/3/034001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059063872
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1088/0953-8984/19/34/346211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030433426
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrev.140.a316 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060431581
138 rdf:type schema:CreativeWork
139 https://doi.org/10.4236/jamp.2014.212129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014774473
140 rdf:type schema:CreativeWork
141 https://doi.org/10.7567/apex.8.055501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073832268
142 rdf:type schema:CreativeWork
143 https://doi.org/10.7567/jjap.56.078004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090252550
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.258690.0 schema:alternateName Korea Maritime and Ocean University
146 schema:name Department of Materials Engineering, Korea Maritime and Ocean University, 49112, Busan, Korea
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...