Graphene plasmon modes on slab waveguides at telecom wavelengths View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-12

AUTHORS

Kwang Jun Ahn

ABSTRACT

In this study, the transversal magnetic (TM) and electric (TE) modes of graphene plasmon in a homogeneous environment and three-layered systems were theoretically investigated. The dispersion relations of the graphene plasmon modes were derived in the framework of classical electrodynamics with plane wave modes and Neumann-Dirichlet boundary conditions. The graphene plasmon modes in the three-layer system reproduced exactly the same dispersion relations as freestanding graphene (Phys. Rev. Lett. 99, 016803 (2007)), as all layers had the same refractive index. The impulse matching condition between the graphene plasmon and guided photons and the propagation decay length of graphene plasmon were investigated by numerically solving the dispersion relations for different values of the Fermi-energy and the refractive index of the upper layer. The TE-mode graphene plasmon has potential for applications of graphene as a polarization-selective modulator due to its convenient impulse matching with guided photons in the region of telecom wavelengths, despite its low propagation decay rates. More... »

PAGES

2096-2100

References to SciGraph publications

Journal

TITLE

Journal of the Korean Physical Society

ISSUE

12

VOLUME

67

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.3938/jkps.67.2096

DOI

http://dx.doi.org/10.3938/jkps.67.2096

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028105301


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ajou University", 
          "id": "https://www.grid.ac/institutes/grid.251916.8", 
          "name": [
            "Department of Energy Systems Research/Department of Physics, Ajou University, 16499, Suwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ahn", 
        "givenName": "Kwang Jun", 
        "id": "sg:person.0625673061.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625673061.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature11253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006010066", 
          "https://doi.org/10.1038/nature11253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1152793", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009016838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/1/013027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009506519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.016803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013943148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.016803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013943148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.205418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020457785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.205418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020457785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023023307", 
          "https://doi.org/10.1038/ncomms7851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029876312", 
          "https://doi.org/10.1038/nature01937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029876312", 
          "https://doi.org/10.1038/nature01937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2012.262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032888903", 
          "https://doi.org/10.1038/nphoton.2012.262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033742220", 
          "https://doi.org/10.1038/nature11254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.097401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042204097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.097401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042204097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2011.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052113440", 
          "https://doi.org/10.1038/nphoton.2011.102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1849", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052791836", 
          "https://doi.org/10.1038/nmat1849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4805074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058075914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0048317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085164077", 
          "https://doi.org/10.1007/bfb0048317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0048317", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085164077", 
          "https://doi.org/10.1007/bfb0048317"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-12", 
    "datePublishedReg": "2015-12-01", 
    "description": "In this study, the transversal magnetic (TM) and electric (TE) modes of graphene plasmon in a homogeneous environment and three-layered systems were theoretically investigated. The dispersion relations of the graphene plasmon modes were derived in the framework of classical electrodynamics with plane wave modes and Neumann-Dirichlet boundary conditions. The graphene plasmon modes in the three-layer system reproduced exactly the same dispersion relations as freestanding graphene (Phys. Rev. Lett. 99, 016803 (2007)), as all layers had the same refractive index. The impulse matching condition between the graphene plasmon and guided photons and the propagation decay length of graphene plasmon were investigated by numerically solving the dispersion relations for different values of the Fermi-energy and the refractive index of the upper layer. The TE-mode graphene plasmon has potential for applications of graphene as a polarization-selective modulator due to its convenient impulse matching with guided photons in the region of telecom wavelengths, despite its low propagation decay rates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3938/jkps.67.2096", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042000", 
        "issn": [
          "0374-4884", 
          "1976-8524"
        ], 
        "name": "Journal of the Korean Physical Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "Graphene plasmon modes on slab waveguides at telecom wavelengths", 
    "pagination": "2096-2100", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85e2d2513cca79300ecded5f47efc5f9dc7882c578ae7ecee46064cfdfde3465"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3938/jkps.67.2096"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028105301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3938/jkps.67.2096", 
      "https://app.dimensions.ai/details/publication/pub.1028105301"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000505.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3938%2Fjkps.67.2096"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3938/jkps.67.2096'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3938/jkps.67.2096'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3938/jkps.67.2096'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3938/jkps.67.2096'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3938/jkps.67.2096 schema:about anzsrc-for:10
2 anzsrc-for:1007
3 schema:author Na99d299785934bef805a32be822d51b7
4 schema:citation sg:pub.10.1007/bfb0048317
5 sg:pub.10.1038/nature01937
6 sg:pub.10.1038/nature11253
7 sg:pub.10.1038/nature11254
8 sg:pub.10.1038/ncomms7851
9 sg:pub.10.1038/nmat1849
10 sg:pub.10.1038/nphoton.2011.102
11 sg:pub.10.1038/nphoton.2012.262
12 https://doi.org/10.1063/1.4805074
13 https://doi.org/10.1088/1367-2630/16/1/013027
14 https://doi.org/10.1103/physrevb.75.205418
15 https://doi.org/10.1103/physrevlett.105.097401
16 https://doi.org/10.1103/physrevlett.99.016803
17 https://doi.org/10.1103/revmodphys.81.109
18 https://doi.org/10.1126/science.1152793
19 schema:datePublished 2015-12
20 schema:datePublishedReg 2015-12-01
21 schema:description In this study, the transversal magnetic (TM) and electric (TE) modes of graphene plasmon in a homogeneous environment and three-layered systems were theoretically investigated. The dispersion relations of the graphene plasmon modes were derived in the framework of classical electrodynamics with plane wave modes and Neumann-Dirichlet boundary conditions. The graphene plasmon modes in the three-layer system reproduced exactly the same dispersion relations as freestanding graphene (Phys. Rev. Lett. 99, 016803 (2007)), as all layers had the same refractive index. The impulse matching condition between the graphene plasmon and guided photons and the propagation decay length of graphene plasmon were investigated by numerically solving the dispersion relations for different values of the Fermi-energy and the refractive index of the upper layer. The TE-mode graphene plasmon has potential for applications of graphene as a polarization-selective modulator due to its convenient impulse matching with guided photons in the region of telecom wavelengths, despite its low propagation decay rates.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N5c587a6924884647b8c6e0ade68cee96
26 N7a54d92fad974be09cb9dc317f55ba2a
27 sg:journal.1042000
28 schema:name Graphene plasmon modes on slab waveguides at telecom wavelengths
29 schema:pagination 2096-2100
30 schema:productId N1e076f8745fe455e9778297c912bf990
31 N2c5ec65387f4420ea6896c21c4e1209d
32 N98cb8fce80f7403b9fa7ae73f8a0f261
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028105301
34 https://doi.org/10.3938/jkps.67.2096
35 schema:sdDatePublished 2019-04-11T01:05
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N6a13cf054c5046db9668285ea5a650d5
38 schema:url http://link.springer.com/10.3938%2Fjkps.67.2096
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N1e076f8745fe455e9778297c912bf990 schema:name doi
43 schema:value 10.3938/jkps.67.2096
44 rdf:type schema:PropertyValue
45 N2c5ec65387f4420ea6896c21c4e1209d schema:name dimensions_id
46 schema:value pub.1028105301
47 rdf:type schema:PropertyValue
48 N5c587a6924884647b8c6e0ade68cee96 schema:volumeNumber 67
49 rdf:type schema:PublicationVolume
50 N6a13cf054c5046db9668285ea5a650d5 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N7a54d92fad974be09cb9dc317f55ba2a schema:issueNumber 12
53 rdf:type schema:PublicationIssue
54 N98cb8fce80f7403b9fa7ae73f8a0f261 schema:name readcube_id
55 schema:value 85e2d2513cca79300ecded5f47efc5f9dc7882c578ae7ecee46064cfdfde3465
56 rdf:type schema:PropertyValue
57 Na99d299785934bef805a32be822d51b7 rdf:first sg:person.0625673061.76
58 rdf:rest rdf:nil
59 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
60 schema:name Technology
61 rdf:type schema:DefinedTerm
62 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
63 schema:name Nanotechnology
64 rdf:type schema:DefinedTerm
65 sg:journal.1042000 schema:issn 0374-4884
66 1976-8524
67 schema:name Journal of the Korean Physical Society
68 rdf:type schema:Periodical
69 sg:person.0625673061.76 schema:affiliation https://www.grid.ac/institutes/grid.251916.8
70 schema:familyName Ahn
71 schema:givenName Kwang Jun
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625673061.76
73 rdf:type schema:Person
74 sg:pub.10.1007/bfb0048317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085164077
75 https://doi.org/10.1007/bfb0048317
76 rdf:type schema:CreativeWork
77 sg:pub.10.1038/nature01937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029876312
78 https://doi.org/10.1038/nature01937
79 rdf:type schema:CreativeWork
80 sg:pub.10.1038/nature11253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006010066
81 https://doi.org/10.1038/nature11253
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/nature11254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033742220
84 https://doi.org/10.1038/nature11254
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/ncomms7851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023023307
87 https://doi.org/10.1038/ncomms7851
88 rdf:type schema:CreativeWork
89 sg:pub.10.1038/nmat1849 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052791836
90 https://doi.org/10.1038/nmat1849
91 rdf:type schema:CreativeWork
92 sg:pub.10.1038/nphoton.2011.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052113440
93 https://doi.org/10.1038/nphoton.2011.102
94 rdf:type schema:CreativeWork
95 sg:pub.10.1038/nphoton.2012.262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032888903
96 https://doi.org/10.1038/nphoton.2012.262
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1063/1.4805074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058075914
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1088/1367-2630/16/1/013027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009506519
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevb.75.205418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020457785
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.105.097401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042204097
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevlett.99.016803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013943148
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1103/revmodphys.81.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408744
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1126/science.1152793 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009016838
111 rdf:type schema:CreativeWork
112 https://www.grid.ac/institutes/grid.251916.8 schema:alternateName Ajou University
113 schema:name Department of Energy Systems Research/Department of Physics, Ajou University, 16499, Suwon, Korea
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...