Ontology type: schema:ScholarlyArticle
2014-09-24
AUTHORSJong Chul Han, Seungman Yun, Hanbean Youn, Soohwa Kam, Seungryong Cho, Thorsten G. Achterkirchen, Ho Kyung Kim
ABSTRACTActive pixel design using the complementary metal-oxide-semiconductor (CMOS) process is a compelling solution for use in X-ray imaging detectors because of its excellent electronic noise characteristics. We have investigated the imaging performance of a CMOS active pixel photodiode array coupled to a granular phosphor through a fiber-optic faceplate for mammographic applications. The imaging performance included the modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Because we observed a nonlinear detector response at low exposures, we used the linearization method for the analysis of the DQE. The linearization method uses the images obtained at detector input, which are converted from those obtained at detector output by using the inverse of the detector response. Compared to the conventional method, the linearization method provided almost the same MTF and a slightly lower normalized NPS. However, the difference between the DQE results obtained by using the two methods was significant. We claim that the conventional DQE analysis of a detector having a nonlinear response characteristic can yield wrong results. Under the standard mammographic imaging condition, we obtained a DQE performance that was competitive with the performances of conventional flat-panel mammography detectors. We believe that the CMOS detector investigated in this study can be successfully used for mammography. More... »
PAGES770-777
http://scigraph.springernature.com/pub.10.3938/jkps.65.770
DOIhttp://dx.doi.org/10.3938/jkps.65.770
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1041849108
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Mechanical Engineering, Pusan National University, 609-735, Busan, Korea",
"id": "http://www.grid.ac/institutes/grid.262229.f",
"name": [
"School of Mechanical Engineering, Pusan National University, 609-735, Busan, Korea"
],
"type": "Organization"
},
"familyName": "Han",
"givenName": "Jong Chul",
"id": "sg:person.010462010223.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010462010223.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Mechanical Engineering, Pusan National University, 609-735, Busan, Korea",
"id": "http://www.grid.ac/institutes/grid.262229.f",
"name": [
"School of Mechanical Engineering, Pusan National University, 609-735, Busan, Korea"
],
"type": "Organization"
},
"familyName": "Yun",
"givenName": "Seungman",
"id": "sg:person.01077135700.44",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077135700.44"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Mechanical Engineering, Pusan National University, 609-735, Busan, Korea",
"id": "http://www.grid.ac/institutes/grid.262229.f",
"name": [
"School of Mechanical Engineering, Pusan National University, 609-735, Busan, Korea"
],
"type": "Organization"
},
"familyName": "Youn",
"givenName": "Hanbean",
"id": "sg:person.016174522476.01",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174522476.01"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Mechanical Engineering, Pusan National University, 609-735, Busan, Korea",
"id": "http://www.grid.ac/institutes/grid.262229.f",
"name": [
"School of Mechanical Engineering, Pusan National University, 609-735, Busan, Korea"
],
"type": "Organization"
},
"familyName": "Kam",
"givenName": "Soohwa",
"id": "sg:person.015513456251.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513456251.34"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 305-701, Daejeon, Korea",
"id": "http://www.grid.ac/institutes/grid.37172.30",
"name": [
"Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 305-701, Daejeon, Korea"
],
"type": "Organization"
},
"familyName": "Cho",
"givenName": "Seungryong",
"id": "sg:person.01071761750.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071761750.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Teledyne Rad-icon Imaging Corp., 94085, Sunnyvale, CA, USA",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Teledyne Rad-icon Imaging Corp., 94085, Sunnyvale, CA, USA"
],
"type": "Organization"
},
"familyName": "Achterkirchen",
"givenName": "Thorsten G.",
"id": "sg:person.07461473353.96",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07461473353.96"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Center for Advanced Medical Engineering Research, Pusan National University, 609-735, Busan, Korea",
"id": "http://www.grid.ac/institutes/grid.262229.f",
"name": [
"School of Mechanical Engineering, Pusan National University, 609-735, Busan, Korea",
"Center for Advanced Medical Engineering Research, Pusan National University, 609-735, Busan, Korea"
],
"type": "Organization"
},
"familyName": "Kim",
"givenName": "Ho Kyung",
"id": "sg:person.01145251100.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145251100.42"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s00330-004-2446-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021649487",
"https://doi.org/10.1007/s00330-004-2446-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00330-005-2734-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025525668",
"https://doi.org/10.1007/s00330-005-2734-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.3938/jkps.60.514",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1045926287",
"https://doi.org/10.3938/jkps.60.514"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-09-24",
"datePublishedReg": "2014-09-24",
"description": "Active pixel design using the complementary metal-oxide-semiconductor (CMOS) process is a compelling solution for use in X-ray imaging detectors because of its excellent electronic noise characteristics. We have investigated the imaging performance of a CMOS active pixel photodiode array coupled to a granular phosphor through a fiber-optic faceplate for mammographic applications. The imaging performance included the modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Because we observed a nonlinear detector response at low exposures, we used the linearization method for the analysis of the DQE. The linearization method uses the images obtained at detector input, which are converted from those obtained at detector output by using the inverse of the detector response. Compared to the conventional method, the linearization method provided almost the same MTF and a slightly lower normalized NPS. However, the difference between the DQE results obtained by using the two methods was significant. We claim that the conventional DQE analysis of a detector having a nonlinear response characteristic can yield wrong results. Under the standard mammographic imaging condition, we obtained a DQE performance that was competitive with the performances of conventional flat-panel mammography detectors. We believe that the CMOS detector investigated in this study can be successfully used for mammography.",
"genre": "article",
"id": "sg:pub.10.3938/jkps.65.770",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1042000",
"issn": [
"0374-4884",
"1976-8524"
],
"name": "Journal of the Korean Physical Society",
"publisher": "Korean Physical Society",
"type": "Periodical"
},
{
"issueNumber": "5",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "65"
}
],
"keywords": [
"noise power spectrum",
"linearization method",
"detective quantum efficiency",
"active pixel detector",
"fiber-optic faceplate",
"modulation transfer function",
"nonlinear response characteristics",
"semiconductor process",
"pixel design",
"Normalized Noise Power Spectrum",
"DQE performance",
"CMOS detector",
"noise characteristics",
"response characteristics",
"granular phosphor",
"quantum efficiency",
"mammography detectors",
"pixel detector",
"photodiode array",
"DQE results",
"conventional methods",
"detector input",
"detector response",
"performance",
"imaging conditions",
"detector output",
"faceplate",
"Fourier analysis",
"compelling solution",
"detector",
"characteristics",
"method",
"same modulation transfer function",
"phosphors",
"mammographic applications",
"efficiency",
"design",
"array",
"wrong results",
"nonlinear detector response",
"applications",
"solution",
"output",
"results",
"process",
"conditions",
"analysis",
"input",
"inverse",
"images",
"spectra",
"use",
"rays",
"response",
"function",
"study",
"low exposure",
"differences",
"exposure",
"mammography"
],
"name": "Fourier analysis of the imaging characteristics of a CMOS active pixel detector for mammography by using a linearization method",
"pagination": "770-777",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1041849108"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.3938/jkps.65.770"
]
}
],
"sameAs": [
"https://doi.org/10.3938/jkps.65.770",
"https://app.dimensions.ai/details/publication/pub.1041849108"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_632.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.3938/jkps.65.770"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3938/jkps.65.770'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3938/jkps.65.770'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3938/jkps.65.770'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3938/jkps.65.770'
This table displays all metadata directly associated to this object as RDF triples.
180 TRIPLES
22 PREDICATES
88 URIs
77 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.3938/jkps.65.770 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | N5ecfa99c8572408cabb2f2de41daee35 |
4 | ″ | schema:citation | sg:pub.10.1007/s00330-004-2446-6 |
5 | ″ | ″ | sg:pub.10.1007/s00330-005-2734-9 |
6 | ″ | ″ | sg:pub.10.3938/jkps.60.514 |
7 | ″ | schema:datePublished | 2014-09-24 |
8 | ″ | schema:datePublishedReg | 2014-09-24 |
9 | ″ | schema:description | Active pixel design using the complementary metal-oxide-semiconductor (CMOS) process is a compelling solution for use in X-ray imaging detectors because of its excellent electronic noise characteristics. We have investigated the imaging performance of a CMOS active pixel photodiode array coupled to a granular phosphor through a fiber-optic faceplate for mammographic applications. The imaging performance included the modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Because we observed a nonlinear detector response at low exposures, we used the linearization method for the analysis of the DQE. The linearization method uses the images obtained at detector input, which are converted from those obtained at detector output by using the inverse of the detector response. Compared to the conventional method, the linearization method provided almost the same MTF and a slightly lower normalized NPS. However, the difference between the DQE results obtained by using the two methods was significant. We claim that the conventional DQE analysis of a detector having a nonlinear response characteristic can yield wrong results. Under the standard mammographic imaging condition, we obtained a DQE performance that was competitive with the performances of conventional flat-panel mammography detectors. We believe that the CMOS detector investigated in this study can be successfully used for mammography. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N49d5bed8367b418ea51aa45f27f8acab |
14 | ″ | ″ | Nb8cddd52c008468c80f458330bf42f81 |
15 | ″ | ″ | sg:journal.1042000 |
16 | ″ | schema:keywords | CMOS detector |
17 | ″ | ″ | DQE performance |
18 | ″ | ″ | DQE results |
19 | ″ | ″ | Fourier analysis |
20 | ″ | ″ | Normalized Noise Power Spectrum |
21 | ″ | ″ | active pixel detector |
22 | ″ | ″ | analysis |
23 | ″ | ″ | applications |
24 | ″ | ″ | array |
25 | ″ | ″ | characteristics |
26 | ″ | ″ | compelling solution |
27 | ″ | ″ | conditions |
28 | ″ | ″ | conventional methods |
29 | ″ | ″ | design |
30 | ″ | ″ | detective quantum efficiency |
31 | ″ | ″ | detector |
32 | ″ | ″ | detector input |
33 | ″ | ″ | detector output |
34 | ″ | ″ | detector response |
35 | ″ | ″ | differences |
36 | ″ | ″ | efficiency |
37 | ″ | ″ | exposure |
38 | ″ | ″ | faceplate |
39 | ″ | ″ | fiber-optic faceplate |
40 | ″ | ″ | function |
41 | ″ | ″ | granular phosphor |
42 | ″ | ″ | images |
43 | ″ | ″ | imaging conditions |
44 | ″ | ″ | input |
45 | ″ | ″ | inverse |
46 | ″ | ″ | linearization method |
47 | ″ | ″ | low exposure |
48 | ″ | ″ | mammographic applications |
49 | ″ | ″ | mammography |
50 | ″ | ″ | mammography detectors |
51 | ″ | ″ | method |
52 | ″ | ″ | modulation transfer function |
53 | ″ | ″ | noise characteristics |
54 | ″ | ″ | noise power spectrum |
55 | ″ | ″ | nonlinear detector response |
56 | ″ | ″ | nonlinear response characteristics |
57 | ″ | ″ | output |
58 | ″ | ″ | performance |
59 | ″ | ″ | phosphors |
60 | ″ | ″ | photodiode array |
61 | ″ | ″ | pixel design |
62 | ″ | ″ | pixel detector |
63 | ″ | ″ | process |
64 | ″ | ″ | quantum efficiency |
65 | ″ | ″ | rays |
66 | ″ | ″ | response |
67 | ″ | ″ | response characteristics |
68 | ″ | ″ | results |
69 | ″ | ″ | same modulation transfer function |
70 | ″ | ″ | semiconductor process |
71 | ″ | ″ | solution |
72 | ″ | ″ | spectra |
73 | ″ | ″ | study |
74 | ″ | ″ | use |
75 | ″ | ″ | wrong results |
76 | ″ | schema:name | Fourier analysis of the imaging characteristics of a CMOS active pixel detector for mammography by using a linearization method |
77 | ″ | schema:pagination | 770-777 |
78 | ″ | schema:productId | N40c6b51b9a5f43ecb269738724849c7c |
79 | ″ | ″ | N47a3e06903ff46eba63f4f40fa4f71db |
80 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041849108 |
81 | ″ | ″ | https://doi.org/10.3938/jkps.65.770 |
82 | ″ | schema:sdDatePublished | 2022-05-20T07:29 |
83 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
84 | ″ | schema:sdPublisher | N7f4b4f775ef94caa8fb48b6c8b73e533 |
85 | ″ | schema:url | https://doi.org/10.3938/jkps.65.770 |
86 | ″ | sgo:license | sg:explorer/license/ |
87 | ″ | sgo:sdDataset | articles |
88 | ″ | rdf:type | schema:ScholarlyArticle |
89 | N40c6b51b9a5f43ecb269738724849c7c | schema:name | doi |
90 | ″ | schema:value | 10.3938/jkps.65.770 |
91 | ″ | rdf:type | schema:PropertyValue |
92 | N47a3e06903ff46eba63f4f40fa4f71db | schema:name | dimensions_id |
93 | ″ | schema:value | pub.1041849108 |
94 | ″ | rdf:type | schema:PropertyValue |
95 | N49d5bed8367b418ea51aa45f27f8acab | schema:volumeNumber | 65 |
96 | ″ | rdf:type | schema:PublicationVolume |
97 | N5ecfa99c8572408cabb2f2de41daee35 | rdf:first | sg:person.010462010223.35 |
98 | ″ | rdf:rest | Nbfb3d4e01c344266997d1299b424c8bb |
99 | N633d72187fa34b0593d40984b992dd6b | rdf:first | sg:person.01071761750.07 |
100 | ″ | rdf:rest | N6bb2c3d25a864a9b827d73e8802ef481 |
101 | N6bb2c3d25a864a9b827d73e8802ef481 | rdf:first | sg:person.07461473353.96 |
102 | ″ | rdf:rest | Naf9695f5d5d546f29468225e94f29535 |
103 | N748226fe736a4c12804243eceeffc0ff | rdf:first | sg:person.015513456251.34 |
104 | ″ | rdf:rest | N633d72187fa34b0593d40984b992dd6b |
105 | N7f4b4f775ef94caa8fb48b6c8b73e533 | schema:name | Springer Nature - SN SciGraph project |
106 | ″ | rdf:type | schema:Organization |
107 | Naf9695f5d5d546f29468225e94f29535 | rdf:first | sg:person.01145251100.42 |
108 | ″ | rdf:rest | rdf:nil |
109 | Nb8cddd52c008468c80f458330bf42f81 | schema:issueNumber | 5 |
110 | ″ | rdf:type | schema:PublicationIssue |
111 | Nbfb3d4e01c344266997d1299b424c8bb | rdf:first | sg:person.01077135700.44 |
112 | ″ | rdf:rest | Nf5e5dbd61c444d93b3ed38789d524fb3 |
113 | Nf5e5dbd61c444d93b3ed38789d524fb3 | rdf:first | sg:person.016174522476.01 |
114 | ″ | rdf:rest | N748226fe736a4c12804243eceeffc0ff |
115 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
116 | ″ | schema:name | Physical Sciences |
117 | ″ | rdf:type | schema:DefinedTerm |
118 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
119 | ″ | schema:name | Other Physical Sciences |
120 | ″ | rdf:type | schema:DefinedTerm |
121 | sg:journal.1042000 | schema:issn | 0374-4884 |
122 | ″ | ″ | 1976-8524 |
123 | ″ | schema:name | Journal of the Korean Physical Society |
124 | ″ | schema:publisher | Korean Physical Society |
125 | ″ | rdf:type | schema:Periodical |
126 | sg:person.010462010223.35 | schema:affiliation | grid-institutes:grid.262229.f |
127 | ″ | schema:familyName | Han |
128 | ″ | schema:givenName | Jong Chul |
129 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010462010223.35 |
130 | ″ | rdf:type | schema:Person |
131 | sg:person.01071761750.07 | schema:affiliation | grid-institutes:grid.37172.30 |
132 | ″ | schema:familyName | Cho |
133 | ″ | schema:givenName | Seungryong |
134 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01071761750.07 |
135 | ″ | rdf:type | schema:Person |
136 | sg:person.01077135700.44 | schema:affiliation | grid-institutes:grid.262229.f |
137 | ″ | schema:familyName | Yun |
138 | ″ | schema:givenName | Seungman |
139 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01077135700.44 |
140 | ″ | rdf:type | schema:Person |
141 | sg:person.01145251100.42 | schema:affiliation | grid-institutes:grid.262229.f |
142 | ″ | schema:familyName | Kim |
143 | ″ | schema:givenName | Ho Kyung |
144 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145251100.42 |
145 | ″ | rdf:type | schema:Person |
146 | sg:person.015513456251.34 | schema:affiliation | grid-institutes:grid.262229.f |
147 | ″ | schema:familyName | Kam |
148 | ″ | schema:givenName | Soohwa |
149 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015513456251.34 |
150 | ″ | rdf:type | schema:Person |
151 | sg:person.016174522476.01 | schema:affiliation | grid-institutes:grid.262229.f |
152 | ″ | schema:familyName | Youn |
153 | ″ | schema:givenName | Hanbean |
154 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016174522476.01 |
155 | ″ | rdf:type | schema:Person |
156 | sg:person.07461473353.96 | schema:affiliation | grid-institutes:None |
157 | ″ | schema:familyName | Achterkirchen |
158 | ″ | schema:givenName | Thorsten G. |
159 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07461473353.96 |
160 | ″ | rdf:type | schema:Person |
161 | sg:pub.10.1007/s00330-004-2446-6 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1021649487 |
162 | ″ | ″ | https://doi.org/10.1007/s00330-004-2446-6 |
163 | ″ | rdf:type | schema:CreativeWork |
164 | sg:pub.10.1007/s00330-005-2734-9 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1025525668 |
165 | ″ | ″ | https://doi.org/10.1007/s00330-005-2734-9 |
166 | ″ | rdf:type | schema:CreativeWork |
167 | sg:pub.10.3938/jkps.60.514 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1045926287 |
168 | ″ | ″ | https://doi.org/10.3938/jkps.60.514 |
169 | ″ | rdf:type | schema:CreativeWork |
170 | grid-institutes:None | schema:alternateName | Teledyne Rad-icon Imaging Corp., 94085, Sunnyvale, CA, USA |
171 | ″ | schema:name | Teledyne Rad-icon Imaging Corp., 94085, Sunnyvale, CA, USA |
172 | ″ | rdf:type | schema:Organization |
173 | grid-institutes:grid.262229.f | schema:alternateName | Center for Advanced Medical Engineering Research, Pusan National University, 609-735, Busan, Korea |
174 | ″ | ″ | School of Mechanical Engineering, Pusan National University, 609-735, Busan, Korea |
175 | ″ | schema:name | Center for Advanced Medical Engineering Research, Pusan National University, 609-735, Busan, Korea |
176 | ″ | ″ | School of Mechanical Engineering, Pusan National University, 609-735, Busan, Korea |
177 | ″ | rdf:type | schema:Organization |
178 | grid-institutes:grid.37172.30 | schema:alternateName | Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 305-701, Daejeon, Korea |
179 | ″ | schema:name | Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, 305-701, Daejeon, Korea |
180 | ″ | rdf:type | schema:Organization |