Layer-number-dependent work function of MoS2 nanoflakes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05

AUTHORS

SooHo Choi, Zhang Shaolin, Woochul Yang

ABSTRACT

We investigated the layer-number-dependent work function of MoS2 nanoflakes by using Kelvin probe force microscopy (KPFM) to measure the surface potential. The work functions of as-prepared 1- to 6-layer MoS2 nanoflakes were 5.15–5.39 eV and increased with increasing layer number. After annealing, the work functions of the nanoflakes decreased to 0.1–0.2 eV due to elimination of absorbed molecules on the surface. However, the work function of the edge region of the annealed flakes was relatively larger than that of the internal region. The charge carrier trapping by adsorbed molecules due to the polarity and the hydrophilicity of MoS2 may cause a reduction in the work function of the annealed flakes compared with that for MoS2 exposed to air. The dependence of the obtained work function of MoS2 nanoflakes on the number of layers is essential to the formation of metal contacts for fabricating future MoS2-based devices. More... »

PAGES

1550-1555

Identifiers

URI

http://scigraph.springernature.com/pub.10.3938/jkps.64.1550

DOI

http://dx.doi.org/10.3938/jkps.64.1550

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009145018


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Dongguk University", 
          "id": "https://www.grid.ac/institutes/grid.255168.d", 
          "name": [
            "Department of Physics, Dongguk University, 100-715, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "SooHo", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dongguk University", 
          "id": "https://www.grid.ac/institutes/grid.255168.d", 
          "name": [
            "Department of Physics, Dongguk University, 100-715, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaolin", 
        "givenName": "Zhang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Dongguk University", 
          "id": "https://www.grid.ac/institutes/grid.255168.d", 
          "name": [
            "Department of Physics, Dongguk University, 100-715, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yang", 
        "givenName": "Woochul", 
        "id": "sg:person.0715610525.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715610525.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0957-4484/23/17/175703", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011904201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(86)90011-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015344489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(86)90011-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015344489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1102896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019008412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201104574", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027979722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028219354", 
          "https://doi.org/10.1038/nnano.2012.193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4801844", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029079862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn1003937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030794634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl903868w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031417418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201203731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036927015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms2018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041706133", 
          "https://doi.org/10.1038/ncomms2018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ssc.2011.03.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045838825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047704758", 
          "https://doi.org/10.1038/nnano.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nchem.1589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050119463", 
          "https://doi.org/10.1038/nchem.1589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl303760m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056219756"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8009044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl8009044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056221220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.105227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057652796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1708627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057777517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3269597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057928347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.12053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060556695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.12053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060556695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.235434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060635933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.235434", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060635933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.28.299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060775751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.28.299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060775751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.246.4928.369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062538551"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-05", 
    "datePublishedReg": "2014-05-01", 
    "description": "We investigated the layer-number-dependent work function of MoS2 nanoflakes by using Kelvin probe force microscopy (KPFM) to measure the surface potential. The work functions of as-prepared 1- to 6-layer MoS2 nanoflakes were 5.15\u20135.39 eV and increased with increasing layer number. After annealing, the work functions of the nanoflakes decreased to 0.1\u20130.2 eV due to elimination of absorbed molecules on the surface. However, the work function of the edge region of the annealed flakes was relatively larger than that of the internal region. The charge carrier trapping by adsorbed molecules due to the polarity and the hydrophilicity of MoS2 may cause a reduction in the work function of the annealed flakes compared with that for MoS2 exposed to air. The dependence of the obtained work function of MoS2 nanoflakes on the number of layers is essential to the formation of metal contacts for fabricating future MoS2-based devices.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3938/jkps.64.1550", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042000", 
        "issn": [
          "0374-4884", 
          "1976-8524"
        ], 
        "name": "Journal of the Korean Physical Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "64"
      }
    ], 
    "name": "Layer-number-dependent work function of MoS2 nanoflakes", 
    "pagination": "1550-1555", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2b918f6fc36d7b313efd1feca5e6b3d12f413a40ee05816e41b25bac68db7cb3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3938/jkps.64.1550"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009145018"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3938/jkps.64.1550", 
      "https://app.dimensions.ai/details/publication/pub.1009145018"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000581.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3938%2Fjkps.64.1550"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3938/jkps.64.1550'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3938/jkps.64.1550'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3938/jkps.64.1550'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3938/jkps.64.1550'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3938/jkps.64.1550 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Ndfb1d7f0c31f47438fc08d5151c8c000
4 schema:citation sg:pub.10.1038/nchem.1589
5 sg:pub.10.1038/ncomms2018
6 sg:pub.10.1038/nnano.2010.279
7 sg:pub.10.1038/nnano.2012.193
8 https://doi.org/10.1002/adma.201104574
9 https://doi.org/10.1002/adma.201203731
10 https://doi.org/10.1016/0025-5408(86)90011-5
11 https://doi.org/10.1016/j.ssc.2011.03.025
12 https://doi.org/10.1021/nl303760m
13 https://doi.org/10.1021/nl8009044
14 https://doi.org/10.1021/nl903868w
15 https://doi.org/10.1021/nn1003937
16 https://doi.org/10.1063/1.105227
17 https://doi.org/10.1063/1.1708627
18 https://doi.org/10.1063/1.3269597
19 https://doi.org/10.1063/1.4801844
20 https://doi.org/10.1088/0957-4484/23/17/175703
21 https://doi.org/10.1103/physrevb.43.12053
22 https://doi.org/10.1103/physrevb.83.235434
23 https://doi.org/10.1103/physrevlett.28.299
24 https://doi.org/10.1126/science.1102896
25 https://doi.org/10.1126/science.246.4928.369
26 schema:datePublished 2014-05
27 schema:datePublishedReg 2014-05-01
28 schema:description We investigated the layer-number-dependent work function of MoS2 nanoflakes by using Kelvin probe force microscopy (KPFM) to measure the surface potential. The work functions of as-prepared 1- to 6-layer MoS2 nanoflakes were 5.15–5.39 eV and increased with increasing layer number. After annealing, the work functions of the nanoflakes decreased to 0.1–0.2 eV due to elimination of absorbed molecules on the surface. However, the work function of the edge region of the annealed flakes was relatively larger than that of the internal region. The charge carrier trapping by adsorbed molecules due to the polarity and the hydrophilicity of MoS2 may cause a reduction in the work function of the annealed flakes compared with that for MoS2 exposed to air. The dependence of the obtained work function of MoS2 nanoflakes on the number of layers is essential to the formation of metal contacts for fabricating future MoS2-based devices.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N2c59a4109be044de8732f7691040b500
33 Nddcd3728dfab4459b81c50a7b85270b9
34 sg:journal.1042000
35 schema:name Layer-number-dependent work function of MoS2 nanoflakes
36 schema:pagination 1550-1555
37 schema:productId N56d6981d79bf4b42835da0aa408166a8
38 Na97b44089005498e9d1a07b998ef35db
39 Nc521ed6b559648328498276d698fd9d9
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009145018
41 https://doi.org/10.3938/jkps.64.1550
42 schema:sdDatePublished 2019-04-10T17:41
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Nd96653e2639842f28263b43959254d6a
45 schema:url http://link.springer.com/10.3938%2Fjkps.64.1550
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N2c59a4109be044de8732f7691040b500 schema:volumeNumber 64
50 rdf:type schema:PublicationVolume
51 N56d6981d79bf4b42835da0aa408166a8 schema:name doi
52 schema:value 10.3938/jkps.64.1550
53 rdf:type schema:PropertyValue
54 N695425c58a0d4dceb9ddd12bfce4e83b schema:affiliation https://www.grid.ac/institutes/grid.255168.d
55 schema:familyName Choi
56 schema:givenName SooHo
57 rdf:type schema:Person
58 N73eb7bc504404384b40079fe95f06a55 rdf:first N9691f511966547aa8946a4bde1ac14f9
59 rdf:rest N82b2cdcc9cd04299b13011b52e8d4d57
60 N82b2cdcc9cd04299b13011b52e8d4d57 rdf:first sg:person.0715610525.26
61 rdf:rest rdf:nil
62 N9691f511966547aa8946a4bde1ac14f9 schema:affiliation https://www.grid.ac/institutes/grid.255168.d
63 schema:familyName Shaolin
64 schema:givenName Zhang
65 rdf:type schema:Person
66 Na97b44089005498e9d1a07b998ef35db schema:name readcube_id
67 schema:value 2b918f6fc36d7b313efd1feca5e6b3d12f413a40ee05816e41b25bac68db7cb3
68 rdf:type schema:PropertyValue
69 Nc521ed6b559648328498276d698fd9d9 schema:name dimensions_id
70 schema:value pub.1009145018
71 rdf:type schema:PropertyValue
72 Nd96653e2639842f28263b43959254d6a schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Nddcd3728dfab4459b81c50a7b85270b9 schema:issueNumber 10
75 rdf:type schema:PublicationIssue
76 Ndfb1d7f0c31f47438fc08d5151c8c000 rdf:first N695425c58a0d4dceb9ddd12bfce4e83b
77 rdf:rest N73eb7bc504404384b40079fe95f06a55
78 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
79 schema:name Chemical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
82 schema:name Physical Chemistry (incl. Structural)
83 rdf:type schema:DefinedTerm
84 sg:journal.1042000 schema:issn 0374-4884
85 1976-8524
86 schema:name Journal of the Korean Physical Society
87 rdf:type schema:Periodical
88 sg:person.0715610525.26 schema:affiliation https://www.grid.ac/institutes/grid.255168.d
89 schema:familyName Yang
90 schema:givenName Woochul
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0715610525.26
92 rdf:type schema:Person
93 sg:pub.10.1038/nchem.1589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050119463
94 https://doi.org/10.1038/nchem.1589
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/ncomms2018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041706133
97 https://doi.org/10.1038/ncomms2018
98 rdf:type schema:CreativeWork
99 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
100 https://doi.org/10.1038/nnano.2010.279
101 rdf:type schema:CreativeWork
102 sg:pub.10.1038/nnano.2012.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028219354
103 https://doi.org/10.1038/nnano.2012.193
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/adma.201104574 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027979722
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/adma.201203731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036927015
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0025-5408(86)90011-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015344489
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.ssc.2011.03.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045838825
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1021/nl303760m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056219756
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/nl8009044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056221220
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/nl903868w schema:sameAs https://app.dimensions.ai/details/publication/pub.1031417418
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1021/nn1003937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030794634
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.105227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057652796
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.1708627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057777517
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.3269597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057928347
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.4801844 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029079862
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1088/0957-4484/23/17/175703 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011904201
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevb.43.12053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060556695
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.83.235434 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060635933
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.28.299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060775751
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1126/science.1102896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019008412
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1126/science.246.4928.369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062538551
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.255168.d schema:alternateName Dongguk University
142 schema:name Department of Physics, Dongguk University, 100-715, Seoul, Korea
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...