Field-induced staggered moment stabilization in frustrated quantum magnets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-05

AUTHORS

Burkhard Schmidt, Mohammad Siahatgar, Peter Thalmeier

ABSTRACT

For low-dimensional frustrated quantum magnets, the dependence of the staggered moment on a magnetic field is nonmonotonic: For small and intermediate fields, quantum fluctuations are gradually suppressed, leading to an increase of the staggered moment as a function of the field strength. For large applied magnetic fields, the classically expected field dependence is recovered, namely a monotonous decrease with increasing field strength. The staggered moment is eventually suppressed when reaching the fully polarized state at the saturation field. The quantitative analysis of this behavior is an excellent tool to determine the frustration parameter of a magnetic compound. We have developed a general finite-size scaling scheme for numerical exact-diagonalization data of low-dimensional frustrated magnets, which we apply to the recently measured field dependence of the magnetic neutron scattering intensity of Cu(pz)2(ClO4)2 in the framework of the S = 1/2 two-dimensional (2D) J1–J2 Heisenberg model. We also apply linear spin-wave theory to complement our numerical findings. Our results show that Cu(pz)2(ClO4)2 is a quasi-2D antiferromagnet with intermediate frustration J2/J1 = 0.2. More... »

PAGES

1499-1503

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.3938/jkps.62.1499

DOI

http://dx.doi.org/10.3938/jkps.62.1499

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1003733711


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Chemische Physik fester Stoffe, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Burkhard", 
        "id": "sg:person.014207120626.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207120626.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Chemische Physik fester Stoffe, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siahatgar", 
        "givenName": "Mohammad", 
        "id": "sg:person.015004501226.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004501226.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Chemische Physik fester Stoffe, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thalmeier", 
        "givenName": "Peter", 
        "id": "sg:person.015501240375.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.79.134412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001758651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.134412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001758651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.197201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003503546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.197201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003503546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.094421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008657351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.094421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008657351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/18/4/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010592806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/18/4/015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010592806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.165101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014204367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.165101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014204367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015975274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.79.195102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015975274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.113409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018309105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.113409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018309105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2004-00156-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018927738", 
          "https://doi.org/10.1140/epjb/e2004-00156-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.132407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019288582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.132407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019288582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.064431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020454562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.064431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020454562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021555782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.1318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021555782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.7278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021839119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.60.7278", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021839119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.104441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029954969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.104441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029954969"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.027213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039450198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.96.027213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039450198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.075123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039519162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.075123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039519162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.134409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048800007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.134409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048800007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.135.a640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.135.a640", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429045"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05", 
    "datePublishedReg": "2013-05-01", 
    "description": "For low-dimensional frustrated quantum magnets, the dependence of the staggered moment on a magnetic field is nonmonotonic: For small and intermediate fields, quantum fluctuations are gradually suppressed, leading to an increase of the staggered moment as a function of the field strength. For large applied magnetic fields, the classically expected field dependence is recovered, namely a monotonous decrease with increasing field strength. The staggered moment is eventually suppressed when reaching the fully polarized state at the saturation field. The quantitative analysis of this behavior is an excellent tool to determine the frustration parameter of a magnetic compound. We have developed a general finite-size scaling scheme for numerical exact-diagonalization data of low-dimensional frustrated magnets, which we apply to the recently measured field dependence of the magnetic neutron scattering intensity of Cu(pz)2(ClO4)2 in the framework of the S = 1/2 two-dimensional (2D) J1\u2013J2 Heisenberg model. We also apply linear spin-wave theory to complement our numerical findings. Our results show that Cu(pz)2(ClO4)2 is a quasi-2D antiferromagnet with intermediate frustration J2/J1 = 0.2.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3938/jkps.62.1499", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042000", 
        "issn": [
          "0374-4884", 
          "1976-8524"
        ], 
        "name": "Journal of the Korean Physical Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "Field-induced staggered moment stabilization in frustrated quantum magnets", 
    "pagination": "1499-1503", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "11c9196716cca95b2568a3e6793da8d8d1e3e4cb35610200a4849c1cc1b261f5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3938/jkps.62.1499"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1003733711"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3938/jkps.62.1499", 
      "https://app.dimensions.ai/details/publication/pub.1003733711"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000503.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3938%2Fjkps.62.1499"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3938/jkps.62.1499'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3938/jkps.62.1499'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3938/jkps.62.1499'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3938/jkps.62.1499'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3938/jkps.62.1499 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nf7c3d3cbf8bc451582515903f904d222
4 schema:citation sg:pub.10.1140/epjb/e2004-00156-3
5 https://doi.org/10.1088/0953-8984/18/4/015
6 https://doi.org/10.1103/physrev.135.a640
7 https://doi.org/10.1103/physrevb.60.7278
8 https://doi.org/10.1103/physrevb.68.113409
9 https://doi.org/10.1103/physrevb.75.094421
10 https://doi.org/10.1103/physrevb.77.104441
11 https://doi.org/10.1103/physrevb.79.134412
12 https://doi.org/10.1103/physrevb.79.195102
13 https://doi.org/10.1103/physrevb.80.132407
14 https://doi.org/10.1103/physrevb.81.134409
15 https://doi.org/10.1103/physrevb.81.165101
16 https://doi.org/10.1103/physrevb.83.075123
17 https://doi.org/10.1103/physrevb.84.064431
18 https://doi.org/10.1103/physrevlett.102.197201
19 https://doi.org/10.1103/physrevlett.85.1318
20 https://doi.org/10.1103/physrevlett.96.027213
21 schema:datePublished 2013-05
22 schema:datePublishedReg 2013-05-01
23 schema:description For low-dimensional frustrated quantum magnets, the dependence of the staggered moment on a magnetic field is nonmonotonic: For small and intermediate fields, quantum fluctuations are gradually suppressed, leading to an increase of the staggered moment as a function of the field strength. For large applied magnetic fields, the classically expected field dependence is recovered, namely a monotonous decrease with increasing field strength. The staggered moment is eventually suppressed when reaching the fully polarized state at the saturation field. The quantitative analysis of this behavior is an excellent tool to determine the frustration parameter of a magnetic compound. We have developed a general finite-size scaling scheme for numerical exact-diagonalization data of low-dimensional frustrated magnets, which we apply to the recently measured field dependence of the magnetic neutron scattering intensity of Cu(pz)2(ClO4)2 in the framework of the S = 1/2 two-dimensional (2D) J1–J2 Heisenberg model. We also apply linear spin-wave theory to complement our numerical findings. Our results show that Cu(pz)2(ClO4)2 is a quasi-2D antiferromagnet with intermediate frustration J2/J1 = 0.2.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N47a3821d37ab4d97a163ea2d9a13b578
28 Na00fa4b91ead4ba58051670f447e1f29
29 sg:journal.1042000
30 schema:name Field-induced staggered moment stabilization in frustrated quantum magnets
31 schema:pagination 1499-1503
32 schema:productId N464d6543eb554e8e9e97b62c0857a546
33 N4935e008f0ee4fbd85c4e21f40859342
34 N650f4377fe5c451c864136c598d10410
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003733711
36 https://doi.org/10.3938/jkps.62.1499
37 schema:sdDatePublished 2019-04-10T17:29
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nb907c4b827254f27b3463c519fbf5fcf
40 schema:url http://link.springer.com/10.3938%2Fjkps.62.1499
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N2770daaf253d496e82d706dc7190b9cb rdf:first sg:person.015501240375.83
45 rdf:rest rdf:nil
46 N464d6543eb554e8e9e97b62c0857a546 schema:name doi
47 schema:value 10.3938/jkps.62.1499
48 rdf:type schema:PropertyValue
49 N47a3821d37ab4d97a163ea2d9a13b578 schema:issueNumber 10
50 rdf:type schema:PublicationIssue
51 N4935e008f0ee4fbd85c4e21f40859342 schema:name dimensions_id
52 schema:value pub.1003733711
53 rdf:type schema:PropertyValue
54 N650f4377fe5c451c864136c598d10410 schema:name readcube_id
55 schema:value 11c9196716cca95b2568a3e6793da8d8d1e3e4cb35610200a4849c1cc1b261f5
56 rdf:type schema:PropertyValue
57 N72900797a7f843649968c4eb1ac2da3d rdf:first sg:person.015004501226.29
58 rdf:rest N2770daaf253d496e82d706dc7190b9cb
59 Na00fa4b91ead4ba58051670f447e1f29 schema:volumeNumber 62
60 rdf:type schema:PublicationVolume
61 Nb907c4b827254f27b3463c519fbf5fcf schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Nf7c3d3cbf8bc451582515903f904d222 rdf:first sg:person.014207120626.15
64 rdf:rest N72900797a7f843649968c4eb1ac2da3d
65 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
66 schema:name Physical Sciences
67 rdf:type schema:DefinedTerm
68 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
69 schema:name Other Physical Sciences
70 rdf:type schema:DefinedTerm
71 sg:journal.1042000 schema:issn 0374-4884
72 1976-8524
73 schema:name Journal of the Korean Physical Society
74 rdf:type schema:Periodical
75 sg:person.014207120626.15 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
76 schema:familyName Schmidt
77 schema:givenName Burkhard
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207120626.15
79 rdf:type schema:Person
80 sg:person.015004501226.29 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
81 schema:familyName Siahatgar
82 schema:givenName Mohammad
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004501226.29
84 rdf:type schema:Person
85 sg:person.015501240375.83 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
86 schema:familyName Thalmeier
87 schema:givenName Peter
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83
89 rdf:type schema:Person
90 sg:pub.10.1140/epjb/e2004-00156-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018927738
91 https://doi.org/10.1140/epjb/e2004-00156-3
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1088/0953-8984/18/4/015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010592806
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrev.135.a640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060429045
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevb.60.7278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021839119
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevb.68.113409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018309105
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevb.75.094421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008657351
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevb.77.104441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029954969
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.79.134412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001758651
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.79.195102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015975274
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevb.80.132407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019288582
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevb.81.134409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048800007
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevb.81.165101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014204367
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevb.83.075123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039519162
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevb.84.064431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020454562
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrevlett.102.197201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003503546
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physrevlett.85.1318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021555782
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevlett.96.027213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039450198
124 rdf:type schema:CreativeWork
125 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
126 schema:name Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden, Germany
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...