Spin excitons from hybridized heavy quasiparticles in YbB12 and CeB6 View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-05

AUTHORS

Alireza Akbari, Peter Thalmeier

ABSTRACT

In f-electron compounds the small indirect hybridization gap which is on the scale of the Kondo temperature leads to an enhanced bare spin response around the zone boundary wave vector, Q′ = (π, π, π). Due to the interaction of hybridized quasiparticles a collective spin exciton resonance mode may appear within or at the gap threshold around Q′. It was found in the small hybridization gap semiconductor YbB12 as well as in the heavy fermion metal CeB6. There are similarities to the spin excitons observed within the excitation gap of unconventional superconductors. We use an Anderson lattice type model supplemented by the molecular fields of hidden and magnetic order in the case of CeB6 to calculate the RPA spin response in these compounds. It exhibits the salient feature in frequency and momentum dependence around Q′ found by inelastic neutron scattering. More... »

PAGES

1418-1422

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.3938/jkps.62.1418

DOI

http://dx.doi.org/10.3938/jkps.62.1418

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047474755


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for the Chemical Physics of Solids, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Akbari", 
        "givenName": "Alireza", 
        "id": "sg:person.07603456351.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07603456351.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for the Chemical Physics of Solids, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thalmeier", 
        "givenName": "Peter", 
        "id": "sg:person.015501240375.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nphys1483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003682197", 
          "https://doi.org/10.1038/nphys1483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006495339", 
          "https://doi.org/10.1038/nphys1852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.106402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008291166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.106402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008291166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.247204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009778271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.247204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009778271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.107005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025744436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.107005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025744436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.087001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029099212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.087001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029099212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.147001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033018281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.147001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033018281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040765310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.140509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040765310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.146403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045667360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.108.146403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045667360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.187001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046812498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.187001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046812498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.13984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.45.13984", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060561002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.137204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.137204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.66.1741", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063116478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jpsj.72.3219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063120926"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05", 
    "datePublishedReg": "2013-05-01", 
    "description": "In f-electron compounds the small indirect hybridization gap which is on the scale of the Kondo temperature leads to an enhanced bare spin response around the zone boundary wave vector, Q\u2032 = (\u03c0, \u03c0, \u03c0). Due to the interaction of hybridized quasiparticles a collective spin exciton resonance mode may appear within or at the gap threshold around Q\u2032. It was found in the small hybridization gap semiconductor YbB12 as well as in the heavy fermion metal CeB6. There are similarities to the spin excitons observed within the excitation gap of unconventional superconductors. We use an Anderson lattice type model supplemented by the molecular fields of hidden and magnetic order in the case of CeB6 to calculate the RPA spin response in these compounds. It exhibits the salient feature in frequency and momentum dependence around Q\u2032 found by inelastic neutron scattering.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3938/jkps.62.1418", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042000", 
        "issn": [
          "0374-4884", 
          "1976-8524"
        ], 
        "name": "Journal of the Korean Physical Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "Spin excitons from hybridized heavy quasiparticles in YbB12 and CeB6", 
    "pagination": "1418-1422", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e227841e3632bb0d4b5844f001b4c7dc30cf6bbe601d6f7f9b05a6c07a27d196"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3938/jkps.62.1418"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047474755"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3938/jkps.62.1418", 
      "https://app.dimensions.ai/details/publication/pub.1047474755"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000507.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3938%2Fjkps.62.1418"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3938/jkps.62.1418'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3938/jkps.62.1418'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3938/jkps.62.1418'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3938/jkps.62.1418'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3938/jkps.62.1418 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N96d2c2b4bd2a487c9df13c39f29a5894
4 schema:citation sg:pub.10.1038/nphys1483
5 sg:pub.10.1038/nphys1852
6 https://doi.org/10.1103/physrevb.45.13984
7 https://doi.org/10.1103/physrevb.78.140509
8 https://doi.org/10.1103/physrevlett.100.087001
9 https://doi.org/10.1103/physrevlett.101.187001
10 https://doi.org/10.1103/physrevlett.102.106402
11 https://doi.org/10.1103/physrevlett.102.107005
12 https://doi.org/10.1103/physrevlett.108.146403
13 https://doi.org/10.1103/physrevlett.94.147001
14 https://doi.org/10.1103/physrevlett.94.247204
15 https://doi.org/10.1103/physrevlett.99.137204
16 https://doi.org/10.1143/jpsj.66.1741
17 https://doi.org/10.1143/jpsj.72.3219
18 schema:datePublished 2013-05
19 schema:datePublishedReg 2013-05-01
20 schema:description In f-electron compounds the small indirect hybridization gap which is on the scale of the Kondo temperature leads to an enhanced bare spin response around the zone boundary wave vector, Q′ = (π, π, π). Due to the interaction of hybridized quasiparticles a collective spin exciton resonance mode may appear within or at the gap threshold around Q′. It was found in the small hybridization gap semiconductor YbB12 as well as in the heavy fermion metal CeB6. There are similarities to the spin excitons observed within the excitation gap of unconventional superconductors. We use an Anderson lattice type model supplemented by the molecular fields of hidden and magnetic order in the case of CeB6 to calculate the RPA spin response in these compounds. It exhibits the salient feature in frequency and momentum dependence around Q′ found by inelastic neutron scattering.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N5082de71c00c45c988f42f11e5976cb6
25 N914da2b65d534d85a29463990dd40d21
26 sg:journal.1042000
27 schema:name Spin excitons from hybridized heavy quasiparticles in YbB12 and CeB6
28 schema:pagination 1418-1422
29 schema:productId N1594add5d7de49bd8e32cf923d41dec5
30 N2cbd61619d274438a67e38b9c71dec4c
31 Ndba1925286ef4e3e8a455f1354605cac
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047474755
33 https://doi.org/10.3938/jkps.62.1418
34 schema:sdDatePublished 2019-04-11T00:14
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N2d91e446396f47dfbfbfd5bd247af055
37 schema:url http://link.springer.com/10.3938%2Fjkps.62.1418
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N1594add5d7de49bd8e32cf923d41dec5 schema:name readcube_id
42 schema:value e227841e3632bb0d4b5844f001b4c7dc30cf6bbe601d6f7f9b05a6c07a27d196
43 rdf:type schema:PropertyValue
44 N2cbd61619d274438a67e38b9c71dec4c schema:name dimensions_id
45 schema:value pub.1047474755
46 rdf:type schema:PropertyValue
47 N2d91e446396f47dfbfbfd5bd247af055 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 N5082de71c00c45c988f42f11e5976cb6 schema:volumeNumber 62
50 rdf:type schema:PublicationVolume
51 N900078c0bfab4a33b94b258451980969 rdf:first sg:person.015501240375.83
52 rdf:rest rdf:nil
53 N914da2b65d534d85a29463990dd40d21 schema:issueNumber 10
54 rdf:type schema:PublicationIssue
55 N96d2c2b4bd2a487c9df13c39f29a5894 rdf:first sg:person.07603456351.53
56 rdf:rest N900078c0bfab4a33b94b258451980969
57 Ndba1925286ef4e3e8a455f1354605cac schema:name doi
58 schema:value 10.3938/jkps.62.1418
59 rdf:type schema:PropertyValue
60 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
61 schema:name Physical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
64 schema:name Other Physical Sciences
65 rdf:type schema:DefinedTerm
66 sg:journal.1042000 schema:issn 0374-4884
67 1976-8524
68 schema:name Journal of the Korean Physical Society
69 rdf:type schema:Periodical
70 sg:person.015501240375.83 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
71 schema:familyName Thalmeier
72 schema:givenName Peter
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83
74 rdf:type schema:Person
75 sg:person.07603456351.53 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
76 schema:familyName Akbari
77 schema:givenName Alireza
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07603456351.53
79 rdf:type schema:Person
80 sg:pub.10.1038/nphys1483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003682197
81 https://doi.org/10.1038/nphys1483
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/nphys1852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006495339
84 https://doi.org/10.1038/nphys1852
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physrevb.45.13984 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060561002
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physrevb.78.140509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040765310
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevlett.100.087001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029099212
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrevlett.101.187001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046812498
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevlett.102.106402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008291166
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevlett.102.107005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025744436
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.108.146403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045667360
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.94.147001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033018281
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.94.247204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009778271
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.99.137204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834649
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1143/jpsj.66.1741 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063116478
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1143/jpsj.72.3219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063120926
109 rdf:type schema:CreativeWork
110 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
111 schema:name Max Planck Institute for the Chemical Physics of Solids, D-01187, Dresden, Germany
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...