Magnetic moment screening in the correlated Kondo lattice model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-05

AUTHORS

Peter Thalmeier, Mohammad Siahatgar, Burkhard Schmidt, Gertrud Zwicknagl

ABSTRACT

The local moments, magnetic correlations and susceptibility in the 2D half-filled correlated Kondo lattice model are studied. We calculate their dependence on the control parameters given by local exchange coupling JK and Coulomb repulsion U. Exact diagonalization (ED) approach for ground state properties as well as finite temperature Lanczos method (FTLM) for the uniform susceptibility are employed for small tiles on the square lattice. The competition of on-site screening and induced inter-site correlations leads to non-monotonic local moment dependence on U for weak Kondo coupling JK. In the large U limit the numerical results are compared to those of the analytical bond operator method in mean field treatment. The variation of the Kondo temperature scale with U is obtained from the temperature dependence of the susceptibility. A monotonic increase with U is found. More... »

PAGES

1388-1392

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.3938/jkps.62.1388

DOI

http://dx.doi.org/10.3938/jkps.62.1388

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050399021


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0602", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Ecology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for the Chemical Physics of Solids, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thalmeier", 
        "givenName": "Peter", 
        "id": "sg:person.015501240375.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for the Chemical Physics of Solids, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siahatgar", 
        "givenName": "Mohammad", 
        "id": "sg:person.015004501226.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004501226.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Chemical Physics of Solids", 
          "id": "https://www.grid.ac/institutes/grid.419507.e", 
          "name": [
            "Max Planck Institute for the Chemical Physics of Solids, D-01187, Dresden, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Burkhard", 
        "id": "sg:person.014207120626.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207120626.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Braunschweig University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6738.a", 
          "name": [
            "Technical University Braunschweig, D-38106, Braunschweig, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zwicknagl", 
        "givenName": "Gertrud", 
        "id": "sg:person.07741667553.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741667553.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.73.245108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003689920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.245108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003689920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4363(77)90190-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005846738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4363(77)90190-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005846738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018738700101082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006080284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.r8828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006687025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.r8828", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006687025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.174426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008385594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.174426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008385594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.134513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017032218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.134513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017032218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2004-00156-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018927738", 
          "https://doi.org/10.1140/epjb/e2004-00156-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.035114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025035066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.035114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025035066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.r752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035382013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.r752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035382013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/000187300243381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036936366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/000187300243345", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039401340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.075123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039519162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.075123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039519162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.024431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043392241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.74.024431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043392241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.9323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.41.9323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060554547"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.3175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.46.3175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060563601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.9514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.9514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060578839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.020505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060629607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.80.020505", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060629607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.266803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.101.266803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060754569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.59.845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.59.845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839130"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05", 
    "datePublishedReg": "2013-05-01", 
    "description": "The local moments, magnetic correlations and susceptibility in the 2D half-filled correlated Kondo lattice model are studied. We calculate their dependence on the control parameters given by local exchange coupling JK and Coulomb repulsion U. Exact diagonalization (ED) approach for ground state properties as well as finite temperature Lanczos method (FTLM) for the uniform susceptibility are employed for small tiles on the square lattice. The competition of on-site screening and induced inter-site correlations leads to non-monotonic local moment dependence on U for weak Kondo coupling JK. In the large U limit the numerical results are compared to those of the analytical bond operator method in mean field treatment. The variation of the Kondo temperature scale with U is obtained from the temperature dependence of the susceptibility. A monotonic increase with U is found.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3938/jkps.62.1388", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042000", 
        "issn": [
          "0374-4884", 
          "1976-8524"
        ], 
        "name": "Journal of the Korean Physical Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "Magnetic moment screening in the correlated Kondo lattice model", 
    "pagination": "1388-1392", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f015c80d3d4ff99fcb9fcefa1c892094c484ebd94cf14f5a4ea469d8d4a52ed8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3938/jkps.62.1388"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050399021"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3938/jkps.62.1388", 
      "https://app.dimensions.ai/details/publication/pub.1050399021"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3938%2Fjkps.62.1388"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3938/jkps.62.1388'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3938/jkps.62.1388'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3938/jkps.62.1388'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3938/jkps.62.1388'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3938/jkps.62.1388 schema:about anzsrc-for:06
2 anzsrc-for:0602
3 schema:author Nf9b25ee215dc4cb58ceaec72c5149e7f
4 schema:citation sg:pub.10.1140/epjb/e2004-00156-3
5 https://doi.org/10.1016/0378-4363(77)90190-5
6 https://doi.org/10.1080/000187300243345
7 https://doi.org/10.1080/000187300243381
8 https://doi.org/10.1080/00018738700101082
9 https://doi.org/10.1103/physrevb.41.9323
10 https://doi.org/10.1103/physrevb.46.3175
11 https://doi.org/10.1103/physrevb.52.9514
12 https://doi.org/10.1103/physrevb.53.r8828
13 https://doi.org/10.1103/physrevb.54.r752
14 https://doi.org/10.1103/physrevb.68.035114
15 https://doi.org/10.1103/physrevb.73.245108
16 https://doi.org/10.1103/physrevb.74.024431
17 https://doi.org/10.1103/physrevb.75.174426
18 https://doi.org/10.1103/physrevb.80.020505
19 https://doi.org/10.1103/physrevb.83.075123
20 https://doi.org/10.1103/physrevb.84.134513
21 https://doi.org/10.1103/physrevlett.101.266803
22 https://doi.org/10.1103/revmodphys.59.845
23 schema:datePublished 2013-05
24 schema:datePublishedReg 2013-05-01
25 schema:description The local moments, magnetic correlations and susceptibility in the 2D half-filled correlated Kondo lattice model are studied. We calculate their dependence on the control parameters given by local exchange coupling JK and Coulomb repulsion U. Exact diagonalization (ED) approach for ground state properties as well as finite temperature Lanczos method (FTLM) for the uniform susceptibility are employed for small tiles on the square lattice. The competition of on-site screening and induced inter-site correlations leads to non-monotonic local moment dependence on U for weak Kondo coupling JK. In the large U limit the numerical results are compared to those of the analytical bond operator method in mean field treatment. The variation of the Kondo temperature scale with U is obtained from the temperature dependence of the susceptibility. A monotonic increase with U is found.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N522ec291df1e419f9c05733ce8fee1b2
30 Nedc50e847b0d426e8d00a973a2a87cbc
31 sg:journal.1042000
32 schema:name Magnetic moment screening in the correlated Kondo lattice model
33 schema:pagination 1388-1392
34 schema:productId Nad1c1ab0bd494f0e827e5fd1e0025c08
35 Nccf4a9762a8049bf98ae6821b02a9962
36 Nf09e029c213546d98391034271eb5e35
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050399021
38 https://doi.org/10.3938/jkps.62.1388
39 schema:sdDatePublished 2019-04-11T01:06
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N76e2344e9fcf43629f3c906f6f4d4d7b
42 schema:url http://link.springer.com/10.3938%2Fjkps.62.1388
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N25cc1897871e4ab9be33fcea1703ea56 rdf:first sg:person.014207120626.15
47 rdf:rest Naf9f4af5db6e4fefaf9d3be65c420eea
48 N522ec291df1e419f9c05733ce8fee1b2 schema:issueNumber 10
49 rdf:type schema:PublicationIssue
50 N76e2344e9fcf43629f3c906f6f4d4d7b schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nad1c1ab0bd494f0e827e5fd1e0025c08 schema:name doi
53 schema:value 10.3938/jkps.62.1388
54 rdf:type schema:PropertyValue
55 Naf9f4af5db6e4fefaf9d3be65c420eea rdf:first sg:person.07741667553.15
56 rdf:rest rdf:nil
57 Nccf4a9762a8049bf98ae6821b02a9962 schema:name dimensions_id
58 schema:value pub.1050399021
59 rdf:type schema:PropertyValue
60 Ndf5070abaa1f48b4bd1e78dc48f60ec8 rdf:first sg:person.015004501226.29
61 rdf:rest N25cc1897871e4ab9be33fcea1703ea56
62 Nedc50e847b0d426e8d00a973a2a87cbc schema:volumeNumber 62
63 rdf:type schema:PublicationVolume
64 Nf09e029c213546d98391034271eb5e35 schema:name readcube_id
65 schema:value f015c80d3d4ff99fcb9fcefa1c892094c484ebd94cf14f5a4ea469d8d4a52ed8
66 rdf:type schema:PropertyValue
67 Nf9b25ee215dc4cb58ceaec72c5149e7f rdf:first sg:person.015501240375.83
68 rdf:rest Ndf5070abaa1f48b4bd1e78dc48f60ec8
69 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
70 schema:name Biological Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0602 schema:inDefinedTermSet anzsrc-for:
73 schema:name Ecology
74 rdf:type schema:DefinedTerm
75 sg:journal.1042000 schema:issn 0374-4884
76 1976-8524
77 schema:name Journal of the Korean Physical Society
78 rdf:type schema:Periodical
79 sg:person.014207120626.15 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
80 schema:familyName Schmidt
81 schema:givenName Burkhard
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207120626.15
83 rdf:type schema:Person
84 sg:person.015004501226.29 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
85 schema:familyName Siahatgar
86 schema:givenName Mohammad
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004501226.29
88 rdf:type schema:Person
89 sg:person.015501240375.83 schema:affiliation https://www.grid.ac/institutes/grid.419507.e
90 schema:familyName Thalmeier
91 schema:givenName Peter
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015501240375.83
93 rdf:type schema:Person
94 sg:person.07741667553.15 schema:affiliation https://www.grid.ac/institutes/grid.6738.a
95 schema:familyName Zwicknagl
96 schema:givenName Gertrud
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741667553.15
98 rdf:type schema:Person
99 sg:pub.10.1140/epjb/e2004-00156-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018927738
100 https://doi.org/10.1140/epjb/e2004-00156-3
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0378-4363(77)90190-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005846738
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1080/000187300243345 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039401340
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1080/000187300243381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036936366
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1080/00018738700101082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006080284
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1103/physrevb.41.9323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060554547
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1103/physrevb.46.3175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060563601
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1103/physrevb.52.9514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060578839
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1103/physrevb.53.r8828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006687025
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1103/physrevb.54.r752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035382013
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physrevb.68.035114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025035066
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1103/physrevb.73.245108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003689920
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physrevb.74.024431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043392241
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.75.174426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008385594
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.80.020505 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060629607
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.83.075123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039519162
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/physrevb.84.134513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017032218
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1103/physrevlett.101.266803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060754569
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1103/revmodphys.59.845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839130
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.419507.e schema:alternateName Max Planck Institute for Chemical Physics of Solids
139 schema:name Max Planck Institute for the Chemical Physics of Solids, D-01187, Dresden, Germany
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.6738.a schema:alternateName Braunschweig University of Technology
142 schema:name Technical University Braunschweig, D-38106, Braunschweig, Germany
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...