Multi-objective optimal design of high frequency probe for scanning ion conductance microscopy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-01

AUTHORS

Renfei Guo, Jian Zhuang, Li Ma, Fei Li, Dehong Yu

ABSTRACT

Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based hopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To further improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency. More... »

PAGES

195-203

Identifiers

URI

http://scigraph.springernature.com/pub.10.3901/cjme.2015.0907.109

DOI

http://dx.doi.org/10.3901/cjme.2015.0907.109

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034142878


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Mechanical Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Renfei", 
        "id": "sg:person.010203714123.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010203714123.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Mechanical Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhuang", 
        "givenName": "Jian", 
        "id": "sg:person.01061107076.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061107076.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Science, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China", 
            "Bioinspired Engineering and Biomechanics Center(BEBC), Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ma", 
        "givenName": "Li", 
        "id": "sg:person.015171431563.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015171431563.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Science, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China", 
            "Bioinspired Engineering and Biomechanics Center(BEBC), Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Fei", 
        "id": "sg:person.01203116545.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203116545.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Mechanical Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Dehong", 
        "id": "sg:person.01076530101.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076530101.32"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.patcog.2013.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007186570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.5b00911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012133536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.2014.277699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012898370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2012.0027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014611179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1477-3155-7-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015953790", 
          "https://doi.org/10.1186/1477-3155-7-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac5046388", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018782539"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0304-3991(01)00096-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020835320"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s121114983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024679824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sbi.2014.07.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031585453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-6-401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031744167", 
          "https://doi.org/10.1186/1556-276x-6-401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1185988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037543829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.colsurfb.2011.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038554147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2818.1997.2430801.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039304885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-2818.1997.2430801.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039304885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.111.300445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041899864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/circresaha.111.300445", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041899864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.micron.2012.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042378982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth.1306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042544710", 
          "https://doi.org/10.1038/nmeth.1306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(01)75826-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045853646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c002607g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046857138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c002607g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046857138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201103094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048819914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c2sm27412d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050684931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnsc.2008.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051459587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c0cs00168f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052018497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac102704z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055001082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac102704z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055001082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac3004852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055002733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac301851n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055003215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac400686k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055004220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac4021769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055004738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja026816c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055831060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja026816c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055831060"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja506139u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055856680"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn203205s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056223793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/tx2004823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056298809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.3290753", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062174600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2464851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062538893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1160/th14-05-0414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063293746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mhs.2013.6710411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095614498"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-01", 
    "datePublishedReg": "2016-01-01", 
    "description": "Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based hopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To further improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3901/cjme.2015.0907.109", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297527", 
        "issn": [
          "0577-6686", 
          "2192-8258"
        ], 
        "name": "Chinese Journal of Mechanical Engineering", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Multi-objective optimal design of high frequency probe for scanning ion conductance microscopy", 
    "pagination": "195-203", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a2a55a2d4ed574bf648431787e8e1316c326e6561b5599d31fdf5747ce54beb9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3901/cjme.2015.0907.109"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034142878"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3901/cjme.2015.0907.109", 
      "https://app.dimensions.ai/details/publication/pub.1034142878"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3901%2FCJME.2015.0907.109"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3901/cjme.2015.0907.109'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3901/cjme.2015.0907.109'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3901/cjme.2015.0907.109'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3901/cjme.2015.0907.109'


 

This table displays all metadata directly associated to this object as RDF triples.

199 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3901/cjme.2015.0907.109 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N1e363fb892b34573b177d4daec3488da
4 schema:citation sg:pub.10.1038/nmeth.1306
5 sg:pub.10.1186/1477-3155-7-7
6 sg:pub.10.1186/1556-276x-6-401
7 https://doi.org/10.1002/adma.201103094
8 https://doi.org/10.1016/j.colsurfb.2011.05.013
9 https://doi.org/10.1016/j.micron.2012.01.012
10 https://doi.org/10.1016/j.patcog.2013.02.005
11 https://doi.org/10.1016/j.pnsc.2008.01.011
12 https://doi.org/10.1016/j.sbi.2014.07.011
13 https://doi.org/10.1016/s0006-3495(01)75826-2
14 https://doi.org/10.1016/s0304-3991(01)00096-1
15 https://doi.org/10.1021/ac102704z
16 https://doi.org/10.1021/ac3004852
17 https://doi.org/10.1021/ac301851n
18 https://doi.org/10.1021/ac400686k
19 https://doi.org/10.1021/ac4021769
20 https://doi.org/10.1021/ac5046388
21 https://doi.org/10.1021/acsnano.5b00911
22 https://doi.org/10.1021/ja026816c
23 https://doi.org/10.1021/ja506139u
24 https://doi.org/10.1021/nn203205s
25 https://doi.org/10.1021/tx2004823
26 https://doi.org/10.1039/c002607g
27 https://doi.org/10.1039/c0cs00168f
28 https://doi.org/10.1039/c2sm27412d
29 https://doi.org/10.1046/j.1365-2818.1997.2430801.x
30 https://doi.org/10.1098/rstb.2012.0027
31 https://doi.org/10.1109/mhs.2013.6710411
32 https://doi.org/10.1113/jphysiol.2014.277699
33 https://doi.org/10.1116/1.3290753
34 https://doi.org/10.1126/science.1185988
35 https://doi.org/10.1126/science.2464851
36 https://doi.org/10.1160/th14-05-0414
37 https://doi.org/10.1161/circresaha.111.300445
38 https://doi.org/10.3390/s121114983
39 schema:datePublished 2016-01
40 schema:datePublishedReg 2016-01-01
41 schema:description Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based hopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To further improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf N6c3c2324de0c4d7ab87be1b211c0e17b
46 Ne842a3c5b43b45a5bb3630ee9d96b9f0
47 sg:journal.1297527
48 schema:name Multi-objective optimal design of high frequency probe for scanning ion conductance microscopy
49 schema:pagination 195-203
50 schema:productId N1f28de984f4c44d1bf02fb13072f8dc4
51 N31fda494e92d47e09bc4c609bd13911f
52 Ne71a43e7b9e74a83b5ce55fac2699af3
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034142878
54 https://doi.org/10.3901/cjme.2015.0907.109
55 schema:sdDatePublished 2019-04-10T15:50
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher Nfade4a7e9d504851af7d8ef5171aac4a
58 schema:url http://link.springer.com/10.3901%2FCJME.2015.0907.109
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0a9f7ef5e25f494f80e33414fdb70f99 rdf:first sg:person.015171431563.88
63 rdf:rest Nac616ba70178435ba54dd98c0f91ade2
64 N1e363fb892b34573b177d4daec3488da rdf:first sg:person.010203714123.49
65 rdf:rest Nda0a79a67f07432f94ae80a00cf359cb
66 N1f28de984f4c44d1bf02fb13072f8dc4 schema:name doi
67 schema:value 10.3901/cjme.2015.0907.109
68 rdf:type schema:PropertyValue
69 N31fda494e92d47e09bc4c609bd13911f schema:name readcube_id
70 schema:value a2a55a2d4ed574bf648431787e8e1316c326e6561b5599d31fdf5747ce54beb9
71 rdf:type schema:PropertyValue
72 N35cfddb56d314eeb8b103f76a95ea811 rdf:first sg:person.01076530101.32
73 rdf:rest rdf:nil
74 N6c3c2324de0c4d7ab87be1b211c0e17b schema:issueNumber 1
75 rdf:type schema:PublicationIssue
76 Nac616ba70178435ba54dd98c0f91ade2 rdf:first sg:person.01203116545.81
77 rdf:rest N35cfddb56d314eeb8b103f76a95ea811
78 Nda0a79a67f07432f94ae80a00cf359cb rdf:first sg:person.01061107076.63
79 rdf:rest N0a9f7ef5e25f494f80e33414fdb70f99
80 Ne71a43e7b9e74a83b5ce55fac2699af3 schema:name dimensions_id
81 schema:value pub.1034142878
82 rdf:type schema:PropertyValue
83 Ne842a3c5b43b45a5bb3630ee9d96b9f0 schema:volumeNumber 29
84 rdf:type schema:PublicationVolume
85 Nfade4a7e9d504851af7d8ef5171aac4a schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
88 schema:name Physical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
91 schema:name Other Physical Sciences
92 rdf:type schema:DefinedTerm
93 sg:journal.1297527 schema:issn 0577-6686
94 2192-8258
95 schema:name Chinese Journal of Mechanical Engineering
96 rdf:type schema:Periodical
97 sg:person.010203714123.49 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
98 schema:familyName Guo
99 schema:givenName Renfei
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010203714123.49
101 rdf:type schema:Person
102 sg:person.01061107076.63 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
103 schema:familyName Zhuang
104 schema:givenName Jian
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061107076.63
106 rdf:type schema:Person
107 sg:person.01076530101.32 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
108 schema:familyName Yu
109 schema:givenName Dehong
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076530101.32
111 rdf:type schema:Person
112 sg:person.01203116545.81 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
113 schema:familyName Li
114 schema:givenName Fei
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203116545.81
116 rdf:type schema:Person
117 sg:person.015171431563.88 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
118 schema:familyName Ma
119 schema:givenName Li
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015171431563.88
121 rdf:type schema:Person
122 sg:pub.10.1038/nmeth.1306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042544710
123 https://doi.org/10.1038/nmeth.1306
124 rdf:type schema:CreativeWork
125 sg:pub.10.1186/1477-3155-7-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015953790
126 https://doi.org/10.1186/1477-3155-7-7
127 rdf:type schema:CreativeWork
128 sg:pub.10.1186/1556-276x-6-401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031744167
129 https://doi.org/10.1186/1556-276x-6-401
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1002/adma.201103094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048819914
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.colsurfb.2011.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038554147
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.micron.2012.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042378982
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.patcog.2013.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007186570
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.pnsc.2008.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051459587
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.sbi.2014.07.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031585453
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/s0006-3495(01)75826-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045853646
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/s0304-3991(01)00096-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020835320
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1021/ac102704z schema:sameAs https://app.dimensions.ai/details/publication/pub.1055001082
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1021/ac3004852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055002733
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1021/ac301851n schema:sameAs https://app.dimensions.ai/details/publication/pub.1055003215
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1021/ac400686k schema:sameAs https://app.dimensions.ai/details/publication/pub.1055004220
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1021/ac4021769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055004738
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1021/ac5046388 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018782539
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1021/acsnano.5b00911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012133536
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1021/ja026816c schema:sameAs https://app.dimensions.ai/details/publication/pub.1055831060
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1021/ja506139u schema:sameAs https://app.dimensions.ai/details/publication/pub.1055856680
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1021/nn203205s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056223793
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1021/tx2004823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056298809
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1039/c002607g schema:sameAs https://app.dimensions.ai/details/publication/pub.1046857138
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1039/c0cs00168f schema:sameAs https://app.dimensions.ai/details/publication/pub.1052018497
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1039/c2sm27412d schema:sameAs https://app.dimensions.ai/details/publication/pub.1050684931
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1046/j.1365-2818.1997.2430801.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039304885
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1098/rstb.2012.0027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014611179
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/mhs.2013.6710411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095614498
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1113/jphysiol.2014.277699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012898370
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1116/1.3290753 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062174600
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1126/science.1185988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037543829
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1126/science.2464851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062538893
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1160/th14-05-0414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063293746
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1161/circresaha.111.300445 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041899864
192 rdf:type schema:CreativeWork
193 https://doi.org/10.3390/s121114983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024679824
194 rdf:type schema:CreativeWork
195 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
196 schema:name Bioinspired Engineering and Biomechanics Center(BEBC), Xi’an Jiaotong University, 710049, Xi’an, China
197 School of Mechanical Engineering, Xi’an Jiaotong University, 710049, Xi’an, China
198 School of Science, Xi’an Jiaotong University, 710049, Xi’an, China
199 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...