Quantifying the informational value of classification images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-01

AUTHORS

Loek Brinkman, Stanny Goffin, Rens van de Schoot, Neeltje E.M. van Haren, Ron Dotsch, Henk Aarts

ABSTRACT

Reverse correlation is an influential psychophysical paradigm that uses a participant's responses to randomly varying images to build a classification image (CI), which is commonly interpreted as a visualization of the participant's mental representation. It is unclear, however, how to statistically quantify the amount of signal present in CIs, which limits the interpretability of these images. In this article, we propose a novel metric, infoVal, which assesses informational value relative to a resampled random distribution and can be interpreted like a z score. In the first part, we define the infoVal metric and show, through simulations, that it adheres to typical Type I error rates under various task conditions (internal validity). In the second part, we show that the metric correlates with markers of data quality in empirical reverse-correlation data, such as the subjective recognizability, objective discriminability, and test-retest reliability of the CIs (convergent validity). In the final part, we demonstrate how the infoVal metric can be used to compare the informational value of reverse-correlation datasets, by comparing data acquired online with data acquired in a controlled lab environment. We recommend a new standard of good practice in which researchers assess the infoVal scores of reverse-correlation data in order to ensure that they do not read signal in CIs where no signal is present. The infoVal metric is implemented in the open-source rcicr R package, to facilitate its adoption. More... »

PAGES

1-15

Identifiers

URI

http://scigraph.springernature.com/pub.10.3758/s13428-019-01232-2

DOI

http://dx.doi.org/10.3758/s13428-019-01232-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113176659

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30937848


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Utrecht University", 
          "id": "https://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Department of Psychology, Utrecht University, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brinkman", 
        "givenName": "Loek", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Maastricht University", 
          "id": "https://www.grid.ac/institutes/grid.5012.6", 
          "name": [
            "Maastricht University, Maastricht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goffin", 
        "givenName": "Stanny", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North-West University", 
          "id": "https://www.grid.ac/institutes/grid.25881.36", 
          "name": [
            "Department of Methods and Statistics, Utrecht University, Utrecht, The Netherlands", 
            "Optentia Research Program, Faculty of Humanities, North-West University, Potchefstroom, South Africa"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van de Schoot", 
        "givenName": "Rens", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "UMC Utrecht, Brain Centre Rudolf Magnus, Department of Psychiatry, Utrecht University, Utrecht, The Netherlands", 
            "Department of Psychiatry, University Medical Center Utrecht, Utrecht & department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Haren", 
        "givenName": "Neeltje E.M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Utrecht University", 
          "id": "https://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Department of Psychology, Utrecht University, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dotsch", 
        "givenName": "Ron", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Utrecht University", 
          "id": "https://www.grid.ac/institutes/grid.5477.1", 
          "name": [
            "Department of Psychology, Utrecht University, Utrecht, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aarts", 
        "givenName": "Henk", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1207/s15516709cog2802_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010494002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15516709cog2802_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010494002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.320099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016206642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9280.2008.02186.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018009147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9280.2008.02186.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018009147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1948550611430272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019404221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1948550611430272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019404221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cognition.2016.09.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025137550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/5.9.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025886136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-psych-010416-044242", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031904119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1751-9004.2011.00389.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040720715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cortex.2014.11.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047122278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797611419675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053117312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797611419675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053117312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1912577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062278167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1167/2.1.i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063405885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.20982/tqmp.05.1.p001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068824736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.20982/tqmp.05.1.p001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068824736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.20982/tqmp.05.1.p001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068824736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jesp.2017.01.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083418894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10463283.2017.1381469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092253821"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-01", 
    "datePublishedReg": "2019-04-01", 
    "description": "Reverse correlation is an influential psychophysical paradigm that uses a participant's responses to randomly varying images to build a classification image (CI), which is commonly interpreted as a visualization of the participant's mental representation. It is unclear, however, how to statistically quantify the amount of signal present in CIs, which limits the interpretability of these images. In this article, we propose a novel metric, infoVal, which assesses informational value relative to a resampled random distribution and can be interpreted like a z score. In the first part, we define the infoVal metric and show, through simulations, that it adheres to typical Type I error rates under various task conditions (internal validity). In the second part, we show that the metric correlates with markers of data quality in empirical reverse-correlation data, such as the subjective recognizability, objective discriminability, and test-retest reliability of the CIs (convergent validity). In the final part, we demonstrate how the infoVal metric can be used to compare the informational value of reverse-correlation datasets, by comparing data acquired online with data acquired in a controlled lab environment. We recommend a new standard of good practice in which researchers assess the infoVal scores of reverse-correlation data in order to ensure that they do not read signal in CIs where no signal is present. The infoVal metric is implemented in the open-source rcicr R package, to facilitate its adoption.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3758/s13428-019-01232-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6384657", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1319746", 
        "issn": [
          "1554-351X", 
          "1532-5970"
        ], 
        "name": "Behavior Research Methods", 
        "type": "Periodical"
      }
    ], 
    "name": "Quantifying the informational value of classification images", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "da767057917082167a8a8c708d4983634d6be3ff2f1ea81600c831da413d64ac"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30937848"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101244316"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3758/s13428-019-01232-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113176659"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3758/s13428-019-01232-2", 
      "https://app.dimensions.ai/details/publication/pub.1113176659"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130811_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3758%2Fs13428-019-01232-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01232-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01232-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01232-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01232-2'


 

This table displays all metadata directly associated to this object as RDF triples.

150 TRIPLES      21 PREDICATES      41 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3758/s13428-019-01232-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4c4ee67811a64f1783e519246310c184
4 schema:citation https://doi.org/10.1016/j.cognition.2016.09.006
5 https://doi.org/10.1016/j.cortex.2014.11.015
6 https://doi.org/10.1016/j.jesp.2017.01.006
7 https://doi.org/10.1080/10463283.2017.1381469
8 https://doi.org/10.1111/j.1467-9280.2008.02186.x
9 https://doi.org/10.1111/j.1751-9004.2011.00389.x
10 https://doi.org/10.1117/12.320099
11 https://doi.org/10.1121/1.1912577
12 https://doi.org/10.1146/annurev-psych-010416-044242
13 https://doi.org/10.1167/2.1.i
14 https://doi.org/10.1167/5.9.1
15 https://doi.org/10.1177/0956797611419675
16 https://doi.org/10.1177/1948550611430272
17 https://doi.org/10.1207/s15516709cog2802_4
18 https://doi.org/10.20982/tqmp.05.1.p001
19 schema:datePublished 2019-04-01
20 schema:datePublishedReg 2019-04-01
21 schema:description Reverse correlation is an influential psychophysical paradigm that uses a participant's responses to randomly varying images to build a classification image (CI), which is commonly interpreted as a visualization of the participant's mental representation. It is unclear, however, how to statistically quantify the amount of signal present in CIs, which limits the interpretability of these images. In this article, we propose a novel metric, infoVal, which assesses informational value relative to a resampled random distribution and can be interpreted like a z score. In the first part, we define the infoVal metric and show, through simulations, that it adheres to typical Type I error rates under various task conditions (internal validity). In the second part, we show that the metric correlates with markers of data quality in empirical reverse-correlation data, such as the subjective recognizability, objective discriminability, and test-retest reliability of the CIs (convergent validity). In the final part, we demonstrate how the infoVal metric can be used to compare the informational value of reverse-correlation datasets, by comparing data acquired online with data acquired in a controlled lab environment. We recommend a new standard of good practice in which researchers assess the infoVal scores of reverse-correlation data in order to ensure that they do not read signal in CIs where no signal is present. The infoVal metric is implemented in the open-source rcicr R package, to facilitate its adoption.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf sg:journal.1319746
26 schema:name Quantifying the informational value of classification images
27 schema:pagination 1-15
28 schema:productId N4d8c2c2af9f74b958124e9c745cab661
29 N8d2c99c1a9d54f9ba8e07100c2b988d2
30 N96b137ad2ce14026b9a5f8a8933d571c
31 Nd3764e27a6e44f6a92513aeb4882b496
32 Ndf85e927b7ba4a3183323be334178b0d
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113176659
34 https://doi.org/10.3758/s13428-019-01232-2
35 schema:sdDatePublished 2019-04-11T13:55
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher N7bf5698a6f9f417492af1237658eeb0d
38 schema:url https://link.springer.com/10.3758%2Fs13428-019-01232-2
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N0455a6a22c614757b14bee341ac15853 rdf:first N05b3fcf987104df8b7fceeedc0a10a7c
43 rdf:rest N7fd4837128cf4fee9f5096ff448a45a4
44 N05b3fcf987104df8b7fceeedc0a10a7c schema:affiliation https://www.grid.ac/institutes/grid.25881.36
45 schema:familyName van de Schoot
46 schema:givenName Rens
47 rdf:type schema:Person
48 N235e2c0ba7f1461ab7b7655a6dc2d561 rdf:first Nc1615d55b1f5446d9a8e3d2d1e956fd1
49 rdf:rest rdf:nil
50 N4c4ee67811a64f1783e519246310c184 rdf:first N676976a36f4f44d3ad4dca0e8d2faedf
51 rdf:rest Nd36ae74c3b7d46e780732144237bfc60
52 N4d8c2c2af9f74b958124e9c745cab661 schema:name dimensions_id
53 schema:value pub.1113176659
54 rdf:type schema:PropertyValue
55 N676976a36f4f44d3ad4dca0e8d2faedf schema:affiliation https://www.grid.ac/institutes/grid.5477.1
56 schema:familyName Brinkman
57 schema:givenName Loek
58 rdf:type schema:Person
59 N7bf5698a6f9f417492af1237658eeb0d schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N7f5f6a951ffb430ea4a978ef45db88fa schema:affiliation https://www.grid.ac/institutes/grid.5477.1
62 schema:familyName Dotsch
63 schema:givenName Ron
64 rdf:type schema:Person
65 N7fd4837128cf4fee9f5096ff448a45a4 rdf:first Nff515233f94e463b962676fb4792db32
66 rdf:rest Ne5028c28d2e040728d268430856fb029
67 N8d2c99c1a9d54f9ba8e07100c2b988d2 schema:name doi
68 schema:value 10.3758/s13428-019-01232-2
69 rdf:type schema:PropertyValue
70 N96b137ad2ce14026b9a5f8a8933d571c schema:name readcube_id
71 schema:value da767057917082167a8a8c708d4983634d6be3ff2f1ea81600c831da413d64ac
72 rdf:type schema:PropertyValue
73 Nc1615d55b1f5446d9a8e3d2d1e956fd1 schema:affiliation https://www.grid.ac/institutes/grid.5477.1
74 schema:familyName Aarts
75 schema:givenName Henk
76 rdf:type schema:Person
77 Nd36ae74c3b7d46e780732144237bfc60 rdf:first Ne6c9a254377c4fbe89b95527f861dbc0
78 rdf:rest N0455a6a22c614757b14bee341ac15853
79 Nd3764e27a6e44f6a92513aeb4882b496 schema:name pubmed_id
80 schema:value 30937848
81 rdf:type schema:PropertyValue
82 Ndf85e927b7ba4a3183323be334178b0d schema:name nlm_unique_id
83 schema:value 101244316
84 rdf:type schema:PropertyValue
85 Ne5028c28d2e040728d268430856fb029 rdf:first N7f5f6a951ffb430ea4a978ef45db88fa
86 rdf:rest N235e2c0ba7f1461ab7b7655a6dc2d561
87 Ne6c9a254377c4fbe89b95527f861dbc0 schema:affiliation https://www.grid.ac/institutes/grid.5012.6
88 schema:familyName Goffin
89 schema:givenName Stanny
90 rdf:type schema:Person
91 Nff515233f94e463b962676fb4792db32 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
92 schema:familyName van Haren
93 schema:givenName Neeltje E.M.
94 rdf:type schema:Person
95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
96 schema:name Information and Computing Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
99 schema:name Artificial Intelligence and Image Processing
100 rdf:type schema:DefinedTerm
101 sg:grant.6384657 http://pending.schema.org/fundedItem sg:pub.10.3758/s13428-019-01232-2
102 rdf:type schema:MonetaryGrant
103 sg:journal.1319746 schema:issn 1532-5970
104 1554-351X
105 schema:name Behavior Research Methods
106 rdf:type schema:Periodical
107 https://doi.org/10.1016/j.cognition.2016.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025137550
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.cortex.2014.11.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047122278
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jesp.2017.01.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083418894
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1080/10463283.2017.1381469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092253821
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1111/j.1467-9280.2008.02186.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018009147
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1111/j.1751-9004.2011.00389.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040720715
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1117/12.320099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016206642
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1121/1.1912577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062278167
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1146/annurev-psych-010416-044242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031904119
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1167/2.1.i schema:sameAs https://app.dimensions.ai/details/publication/pub.1063405885
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1167/5.9.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025886136
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1177/0956797611419675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053117312
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1177/1948550611430272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019404221
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1207/s15516709cog2802_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010494002
134 rdf:type schema:CreativeWork
135 https://doi.org/10.20982/tqmp.05.1.p001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068824736
136 rdf:type schema:CreativeWork
137 https://www.grid.ac/institutes/grid.25881.36 schema:alternateName North-West University
138 schema:name Department of Methods and Statistics, Utrecht University, Utrecht, The Netherlands
139 Optentia Research Program, Faculty of Humanities, North-West University, Potchefstroom, South Africa
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.5012.6 schema:alternateName Maastricht University
142 schema:name Maastricht University, Maastricht, The Netherlands
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.5477.1 schema:alternateName Utrecht University
145 schema:name Department of Psychology, Utrecht University, Utrecht, The Netherlands
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.5645.2 schema:alternateName Erasmus University Medical Center
148 schema:name Department of Psychiatry, University Medical Center Utrecht, Utrecht & department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, The Netherlands
149 UMC Utrecht, Brain Centre Rudolf Magnus, Department of Psychiatry, Utrecht University, Utrecht, The Netherlands
150 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...