A heteroscedastic hidden Markov mixture model for responses and categorized response times View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

Dylan Molenaar, Sandor Rózsa, Maria Bolsinova

ABSTRACT

Various mixture modeling approaches have been proposed to identify within-subjects differences in the psychological processes underlying responses to psychometric tests. Although valuable, the existing mixture models are associated with at least one of the following three challenges: (1) A parametric distribution is assumed for the response times that-if violated-may bias the results; (2) the response processes are assumed to result in equal variances (homoscedasticity) in the response times, whereas some processes may produce more variability than others (heteroscedasticity); and (3) the different response processes are modeled as independent latent variables, whereas they may be related. Although each of these challenges has been addressed separately, in practice they may occur simultaneously. Therefore, we propose a heteroscedastic hidden Markov mixture model for responses and categorized response times that addresses all the challenges above in a single model. In a simulation study, we demonstrated that the model is associated with acceptable parameter recovery and acceptable resolution to distinguish between various special cases. In addition, the model was applied to the responses and response times of the WAIS-IV block design subtest, to demonstrate its use in practice. More... »

PAGES

1-21

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.3758/s13428-019-01229-x

DOI

http://dx.doi.org/10.3758/s13428-019-01229-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113051818

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30924104


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Amsterdam", 
          "id": "https://www.grid.ac/institutes/grid.7177.6", 
          "name": [
            "Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Molenaar", 
        "givenName": "Dylan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Washington University in St. Louis", 
          "id": "https://www.grid.ac/institutes/grid.4367.6", 
          "name": [
            "Washington University School of Medicine, St. Louis, MO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00f3zsa", 
        "givenName": "Sandor", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ACTNext, Iowa City, IA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolsinova", 
        "givenName": "Maria", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02294361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000149443", 
          "https://doi.org/10.1007/bf02294361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294361", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000149443", 
          "https://doi.org/10.1007/bf02294361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/a0020144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004092063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-3984.1997.tb00516.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004435336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-3984.1997.tb00516.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004435336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8295.1979.tb01687.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005838720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007886509", 
          "https://doi.org/10.1007/bf02294554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294554", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007886509", 
          "https://doi.org/10.1007/bf02294554"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intell.2011.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009055514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.84.2.127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009068124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0093487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010781274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-009-9129-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011190163", 
          "https://doi.org/10.1007/s11336-009-9129-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-009-9129-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011190163", 
          "https://doi.org/10.1007/s11336-009-9129-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/1082-989x.9.3.301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011566915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0883-0355(89)90002-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012065981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-006-1478-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012309203", 
          "https://doi.org/10.1007/s11336-006-1478-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuropsychologia.2008.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012491268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00273171.2016.1192983", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016051378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/jintelligence4030010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016143461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/1082-989x.8.3.338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017487785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-000-0810-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018630138", 
          "https://doi.org/10.1007/s11336-000-0810-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-000-0810-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018630138", 
          "https://doi.org/10.1007/s11336-000-0810-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cogpsych.2007.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025294361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.85.2.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026981133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-2217(01)00081-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027424495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2044-8317.1965.tb00342.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027840312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/a0022749", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028592167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028741998", 
          "https://doi.org/10.1007/bf02294360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028741998", 
          "https://doi.org/10.1007/bf02294360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02296272", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029055534", 
          "https://doi.org/10.1007/bf02296272"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030477014", 
          "https://doi.org/10.1007/bf02294825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294825", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030477014", 
          "https://doi.org/10.1007/bf02294825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-016-9525-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031539529", 
          "https://doi.org/10.1007/s11336-016-9525-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11336-016-9525-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031539529", 
          "https://doi.org/10.1007/s11336-016-9525-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0965(03)00058-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032293990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0965(03)00058-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032293990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intell.2016.02.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033271900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11634-013-0154-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033484916", 
          "https://doi.org/10.1007/s11634-013-0154-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10705511.2015.1014040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036486990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/bmsp.12054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040623379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aoms/1177697196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042997205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-50974-2_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043239603", 
          "https://doi.org/10.1007/978-3-642-50974-2_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044620865", 
          "https://doi.org/10.1007/bf02294853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02294853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044620865", 
          "https://doi.org/10.1007/bf02294853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176344136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044872629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-31314-1_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050048406", 
          "https://doi.org/10.1007/3-540-31314-1_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00273171.2014.962684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051273345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15327906mbr2903_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051860759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1974.1100705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v020.i07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068672302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1165995", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069387847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/bmsp.12117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092238472"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-28", 
    "datePublishedReg": "2019-03-28", 
    "description": "Various mixture modeling approaches have been proposed to identify within-subjects differences in the psychological processes underlying responses to psychometric tests. Although valuable, the existing mixture models are associated with at least one of the following three challenges: (1) A parametric distribution is assumed for the response times that-if violated-may bias the results; (2) the response processes are assumed to result in equal variances (homoscedasticity) in the response times, whereas some processes may produce more variability than others (heteroscedasticity); and (3) the different response processes are modeled as independent latent variables, whereas they may be related. Although each of these challenges has been addressed separately, in practice they may occur simultaneously. Therefore, we propose a heteroscedastic hidden Markov mixture model for responses and categorized response times that addresses all the challenges above in a single model. In a simulation study, we demonstrated that the model is associated with acceptable parameter recovery and acceptable resolution to distinguish between various special cases. In addition, the model was applied to the responses and response times of the WAIS-IV block design subtest, to demonstrate its use in practice.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3758/s13428-019-01229-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6384034", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1319746", 
        "issn": [
          "1554-351X", 
          "1532-5970"
        ], 
        "name": "Behavior Research Methods", 
        "type": "Periodical"
      }
    ], 
    "name": "A heteroscedastic hidden Markov mixture model for responses and categorized response times", 
    "pagination": "1-21", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2fa2ba91946d595f8d3ec0e79de48a4f505e00858db0ca95c28669c560fc0e8f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30924104"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101244316"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3758/s13428-019-01229-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113051818"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3758/s13428-019-01229-x", 
      "https://app.dimensions.ai/details/publication/pub.1113051818"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78934_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3758%2Fs13428-019-01229-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01229-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01229-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01229-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01229-x'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      21 PREDICATES      68 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3758/s13428-019-01229-x schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Nee460ec9751243a7b8af1cb91f4af3b0
4 schema:citation sg:pub.10.1007/3-540-31314-1_10
5 sg:pub.10.1007/978-3-642-50974-2_5
6 sg:pub.10.1007/bf02294360
7 sg:pub.10.1007/bf02294361
8 sg:pub.10.1007/bf02294554
9 sg:pub.10.1007/bf02294825
10 sg:pub.10.1007/bf02294853
11 sg:pub.10.1007/bf02296272
12 sg:pub.10.1007/s11336-000-0810-3
13 sg:pub.10.1007/s11336-006-1478-z
14 sg:pub.10.1007/s11336-009-9129-9
15 sg:pub.10.1007/s11336-016-9525-x
16 sg:pub.10.1007/s11634-013-0154-2
17 https://doi.org/10.1016/0883-0355(89)90002-5
18 https://doi.org/10.1016/j.cogpsych.2007.12.002
19 https://doi.org/10.1016/j.intell.2011.11.002
20 https://doi.org/10.1016/j.intell.2016.02.012
21 https://doi.org/10.1016/j.neuropsychologia.2008.10.013
22 https://doi.org/10.1016/s0022-0965(03)00058-4
23 https://doi.org/10.1016/s0377-2217(01)00081-9
24 https://doi.org/10.1037/0033-295x.84.2.127
25 https://doi.org/10.1037/0033-295x.85.2.59
26 https://doi.org/10.1037/1082-989x.8.3.338
27 https://doi.org/10.1037/1082-989x.9.3.301
28 https://doi.org/10.1037/a0020144
29 https://doi.org/10.1037/a0022749
30 https://doi.org/10.1037/h0093487
31 https://doi.org/10.1080/00273171.2014.962684
32 https://doi.org/10.1080/00273171.2016.1192983
33 https://doi.org/10.1080/10705511.2015.1014040
34 https://doi.org/10.1109/tac.1974.1100705
35 https://doi.org/10.1111/bmsp.12054
36 https://doi.org/10.1111/bmsp.12117
37 https://doi.org/10.1111/j.1745-3984.1997.tb00516.x
38 https://doi.org/10.1111/j.2044-8295.1979.tb01687.x
39 https://doi.org/10.1111/j.2044-8317.1965.tb00342.x
40 https://doi.org/10.1207/s15327906mbr2903_2
41 https://doi.org/10.1214/aoms/1177697196
42 https://doi.org/10.1214/aos/1176344136
43 https://doi.org/10.18637/jss.v020.i07
44 https://doi.org/10.2307/1165995
45 https://doi.org/10.3390/jintelligence4030010
46 schema:datePublished 2019-03-28
47 schema:datePublishedReg 2019-03-28
48 schema:description Various mixture modeling approaches have been proposed to identify within-subjects differences in the psychological processes underlying responses to psychometric tests. Although valuable, the existing mixture models are associated with at least one of the following three challenges: (1) A parametric distribution is assumed for the response times that-if violated-may bias the results; (2) the response processes are assumed to result in equal variances (homoscedasticity) in the response times, whereas some processes may produce more variability than others (heteroscedasticity); and (3) the different response processes are modeled as independent latent variables, whereas they may be related. Although each of these challenges has been addressed separately, in practice they may occur simultaneously. Therefore, we propose a heteroscedastic hidden Markov mixture model for responses and categorized response times that addresses all the challenges above in a single model. In a simulation study, we demonstrated that the model is associated with acceptable parameter recovery and acceptable resolution to distinguish between various special cases. In addition, the model was applied to the responses and response times of the WAIS-IV block design subtest, to demonstrate its use in practice.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf sg:journal.1319746
53 schema:name A heteroscedastic hidden Markov mixture model for responses and categorized response times
54 schema:pagination 1-21
55 schema:productId N57bd5d54dd114fafb70ee6efbe1a7f4c
56 N5d8769cafee646a8a084a17f22d73270
57 N5fef010c170f43ae8a8fc5ab348c019a
58 Naeff180d1d7f466ab9bb69e8a2bc3a44
59 Nbc8401fd34b64880b586c99daa842a0b
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113051818
61 https://doi.org/10.3758/s13428-019-01229-x
62 schema:sdDatePublished 2019-04-11T13:17
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N9774b609378f4fb0a1e8cebcea81f950
65 schema:url https://link.springer.com/10.3758%2Fs13428-019-01229-x
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N02eef58ba7e249de9e06a3cd90c37d26 schema:affiliation https://www.grid.ac/institutes/grid.4367.6
70 schema:familyName Rózsa
71 schema:givenName Sandor
72 rdf:type schema:Person
73 N57bd5d54dd114fafb70ee6efbe1a7f4c schema:name nlm_unique_id
74 schema:value 101244316
75 rdf:type schema:PropertyValue
76 N5d8769cafee646a8a084a17f22d73270 schema:name dimensions_id
77 schema:value pub.1113051818
78 rdf:type schema:PropertyValue
79 N5fef010c170f43ae8a8fc5ab348c019a schema:name doi
80 schema:value 10.3758/s13428-019-01229-x
81 rdf:type schema:PropertyValue
82 N62b4d3c527a44c09886114d4a6f7842e rdf:first N02eef58ba7e249de9e06a3cd90c37d26
83 rdf:rest N9ffeee9e4c4340dbb7faf4f1282d131c
84 N9774b609378f4fb0a1e8cebcea81f950 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N9e45a4de99dd453da7b83b811b72031b schema:name ACTNext, Iowa City, IA, USA
87 rdf:type schema:Organization
88 N9ffeee9e4c4340dbb7faf4f1282d131c rdf:first Nbf6d6e6ed4af4c5d8385274dced536bf
89 rdf:rest rdf:nil
90 Naeff180d1d7f466ab9bb69e8a2bc3a44 schema:name readcube_id
91 schema:value 2fa2ba91946d595f8d3ec0e79de48a4f505e00858db0ca95c28669c560fc0e8f
92 rdf:type schema:PropertyValue
93 Nba36b58ddcbd4066acb894c2570649eb schema:affiliation https://www.grid.ac/institutes/grid.7177.6
94 schema:familyName Molenaar
95 schema:givenName Dylan
96 rdf:type schema:Person
97 Nbc8401fd34b64880b586c99daa842a0b schema:name pubmed_id
98 schema:value 30924104
99 rdf:type schema:PropertyValue
100 Nbf6d6e6ed4af4c5d8385274dced536bf schema:affiliation N9e45a4de99dd453da7b83b811b72031b
101 schema:familyName Bolsinova
102 schema:givenName Maria
103 rdf:type schema:Person
104 Nee460ec9751243a7b8af1cb91f4af3b0 rdf:first Nba36b58ddcbd4066acb894c2570649eb
105 rdf:rest N62b4d3c527a44c09886114d4a6f7842e
106 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
107 schema:name Psychology and Cognitive Sciences
108 rdf:type schema:DefinedTerm
109 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
110 schema:name Psychology
111 rdf:type schema:DefinedTerm
112 sg:grant.6384034 http://pending.schema.org/fundedItem sg:pub.10.3758/s13428-019-01229-x
113 rdf:type schema:MonetaryGrant
114 sg:journal.1319746 schema:issn 1532-5970
115 1554-351X
116 schema:name Behavior Research Methods
117 rdf:type schema:Periodical
118 sg:pub.10.1007/3-540-31314-1_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050048406
119 https://doi.org/10.1007/3-540-31314-1_10
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/978-3-642-50974-2_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043239603
122 https://doi.org/10.1007/978-3-642-50974-2_5
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/bf02294360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028741998
125 https://doi.org/10.1007/bf02294360
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/bf02294361 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000149443
128 https://doi.org/10.1007/bf02294361
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/bf02294554 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007886509
131 https://doi.org/10.1007/bf02294554
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/bf02294825 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030477014
134 https://doi.org/10.1007/bf02294825
135 rdf:type schema:CreativeWork
136 sg:pub.10.1007/bf02294853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044620865
137 https://doi.org/10.1007/bf02294853
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/bf02296272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029055534
140 https://doi.org/10.1007/bf02296272
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s11336-000-0810-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018630138
143 https://doi.org/10.1007/s11336-000-0810-3
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s11336-006-1478-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1012309203
146 https://doi.org/10.1007/s11336-006-1478-z
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s11336-009-9129-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011190163
149 https://doi.org/10.1007/s11336-009-9129-9
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s11336-016-9525-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031539529
152 https://doi.org/10.1007/s11336-016-9525-x
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s11634-013-0154-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033484916
155 https://doi.org/10.1007/s11634-013-0154-2
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/0883-0355(89)90002-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012065981
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.cogpsych.2007.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025294361
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.intell.2011.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009055514
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.intell.2016.02.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033271900
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.neuropsychologia.2008.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012491268
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/s0022-0965(03)00058-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032293990
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/s0377-2217(01)00081-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027424495
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1037/0033-295x.84.2.127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009068124
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1037/0033-295x.85.2.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026981133
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1037/1082-989x.8.3.338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017487785
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1037/1082-989x.9.3.301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011566915
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1037/a0020144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004092063
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1037/a0022749 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028592167
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1037/h0093487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010781274
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1080/00273171.2014.962684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051273345
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1080/00273171.2016.1192983 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016051378
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1080/10705511.2015.1014040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036486990
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tac.1974.1100705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471419
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1111/bmsp.12054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040623379
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1111/bmsp.12117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092238472
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1111/j.1745-3984.1997.tb00516.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004435336
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1111/j.2044-8295.1979.tb01687.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005838720
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1111/j.2044-8317.1965.tb00342.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027840312
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1207/s15327906mbr2903_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051860759
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1214/aoms/1177697196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042997205
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1214/aos/1176344136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044872629
208 rdf:type schema:CreativeWork
209 https://doi.org/10.18637/jss.v020.i07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672302
210 rdf:type schema:CreativeWork
211 https://doi.org/10.2307/1165995 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069387847
212 rdf:type schema:CreativeWork
213 https://doi.org/10.3390/jintelligence4030010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016143461
214 rdf:type schema:CreativeWork
215 https://www.grid.ac/institutes/grid.4367.6 schema:alternateName Washington University in St. Louis
216 schema:name Washington University School of Medicine, St. Louis, MO, USA
217 rdf:type schema:Organization
218 https://www.grid.ac/institutes/grid.7177.6 schema:alternateName University of Amsterdam
219 schema:name Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...