A method, framework, and tutorial for efficiently simulating models of decision-making View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-28

AUTHORS

Nathan J. Evans

ABSTRACT

Evidence accumulation models (EAMs) have become the dominant models of rapid decision-making. Several variants of these models have been proposed, ranging from the simple linear ballistic accumulator (LBA) to the more complex leaky-competing accumulator (LCA), and further extensions that include time-varying rates of evidence accumulation or decision thresholds. Although applications of the simpler variants have been widespread, applications of the more complex models have been fewer, largely due to their intractable likelihood function and the computational cost of mass simulation. Here, I present a framework for efficiently fitting complex EAMs, which uses a new, efficient method of simulating these models. I find that the majority of simulation time is taken up by random number generation (RNG) from the normal distribution, needed for the stochastic noise of the differential equation. To reduce this inefficiency, I propose using the well-known concept within computer science of "look-up tables" (LUTs) as an approximation to the inverse cumulative density function (iCDF) method of RNG, which I call "LUT-iCDF". I show that when using an appropriately sized LUT, simulations using LUT-iCDF closely match those from the standard RNG method in R. My framework, which I provide a detailed tutorial on how to implement, includes C code for 12 different variants of EAMs using the LUT-iCDF method, and should make the implementation of complex EAMs easier and faster. More... »

PAGES

1-15

References to SciGraph publications

  • 2017-12. The computations that support simple decision-making: A comparison between the diffusion and urgency-gating models in SCIENTIFIC REPORTS
  • 2014-04. A generalized, likelihood-free method for posterior estimation in BULLETIN OF THE PSYCHONOMIC SOCIETY
  • 2017-04. People adopt optimal policies in simple decision-making, after practice and guidance in BULLETIN OF THE PSYCHONOMIC SOCIETY
  • 1986. Density Estimation for Statistics and Data Analysis in NONE
  • 1960-09. Models for choice-reaction time in PSYCHOMETRIKA
  • 2007-11. Fast-dm: A free program for efficient diffusion model analysis in BEHAVIOR RESEARCH METHODS
  • 2018-04. Bayes factors for the linear ballistic accumulator model of decision-making in BEHAVIOR RESEARCH METHODS
  • 2002-09. Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability in BULLETIN OF THE PSYCHONOMIC SOCIETY
  • 2018-11-08. Optimal or not; depends on the task in BULLETIN OF THE PSYCHONOMIC SOCIETY
  • 2009-11. Getting more from accuracy and response time data: Methods for fitting the linear ballistic accumulator in BEHAVIOR RESEARCH METHODS
  • 2012-02. Age-related differences in diffusion model boundary optimality with both trial-limited and time-limited tasks in BULLETIN OF THE PSYCHONOMIC SOCIETY
  • 2017-10. Need for closure is associated with urgency in perceptual decision-making in MEMORY & COGNITION
  • 2009-12. The overconstraint of response time models: Rethinking the scaling problem in BULLETIN OF THE PSYCHONOMIC SOCIETY
  • 2018-04. Bayesian analysis of the piecewise diffusion decision model in BEHAVIOR RESEARCH METHODS
  • 1993-05. A neural basis for visual search in inferior temporal cortex in NATURE
  • Journal

    TITLE

    Behavior Research Methods

    ISSUE

    N/A

    VOLUME

    N/A

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3758/s13428-019-01219-z

    DOI

    http://dx.doi.org/10.3758/s13428-019-01219-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1113057431

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30924105


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Vanderbilt University", 
              "id": "https://www.grid.ac/institutes/grid.152326.1", 
              "name": [
                "Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands", 
                "Department of Psychology, Vanderbilt University, Nashville, TN, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Evans", 
            "givenName": "Nathan J.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jad.2013.10.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004798849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jad.2013.10.025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004798849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13423-016-1135-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005287711", 
              "https://doi.org/10.3758/s13423-016-1135-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13423-016-1135-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005287711", 
              "https://doi.org/10.3758/s13423-016-1135-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1460-9568.2006.05221.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006242878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13423-011-0189-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009050943", 
              "https://doi.org/10.3758/s13423-011-0189-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.00088.2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009254413"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2015.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010401093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2015.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010401093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2015.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010401093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2015.08.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010401093"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.0309-11.2011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010602550"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.4010-11.2012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013310973"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.1844-09.2009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014014748"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0033-295x.115.2.396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015138044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.2410-14.2015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016730781"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/bf03196302", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019981711", 
              "https://doi.org/10.3758/bf03196302"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-9280.00067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021131894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/1467-9280.00067", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021131894"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13423-013-0530-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021370895", 
              "https://doi.org/10.3758/s13423-013-0530-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13423-013-0530-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021370895", 
              "https://doi.org/10.3758/s13423-013-0530-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/a0020580", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021796950"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2015.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022642470"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02289729", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024527739", 
              "https://doi.org/10.1007/bf02289729"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cogpsych.2007.12.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025294361"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/cogs.12094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025363586"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0033-295x.108.3.550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026026984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0033-295x.108.3.550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026026984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0033-295x.108.3.550", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026026984"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cogpsych.2015.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026800931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cogpsych.2015.11.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026800931"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/0033-295x.85.2.59", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026981133"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/bf03192967", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027202776", 
              "https://doi.org/10.3758/bf03192967"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/363345a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033564522", 
              "https://doi.org/10.1038/363345a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cogpsych.2014.03.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035520922"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/brm.41.4.1095", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042004778", 
              "https://doi.org/10.3758/brm.41.4.1095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/a0030543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042202252"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuron.2010.12.037", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044765169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/pbr.16.6.1129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046454206", 
              "https://doi.org/10.3758/pbr.16.6.1129"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2016.12.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049669969"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.01071.2011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050075916"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0959-4388(94)90059-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050126866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0959-4388(94)90059-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050126866"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/a0020311", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052242096"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0954-898x_2_3_003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059115877"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.22-21-09475.2002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1075186227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1523/jneurosci.13-01-00334.1993", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082800820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/rev0000057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083404848"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13428-017-0887-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085092456", 
              "https://doi.org/10.3758/s13428-017-0887-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13428-017-0887-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085092456", 
              "https://doi.org/10.3758/s13428-017-0887-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13428-017-0887-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085092456", 
              "https://doi.org/10.3758/s13428-017-0887-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13421-017-0718-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085862779", 
              "https://doi.org/10.3758/s13421-017-0718-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13421-017-0718-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085862779", 
              "https://doi.org/10.3758/s13421-017-0718-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13428-017-0901-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085939959", 
              "https://doi.org/10.3758/s13428-017-0901-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13428-017-0901-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085939959", 
              "https://doi.org/10.3758/s13428-017-0901-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2017.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092331376"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/s41598-017-16694-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092869969", 
              "https://doi.org/10.1038/s41598-017-16694-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/rev0000089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099939057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/rev0000089", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099939057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/cogs.12627", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1104407400"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/rev0000105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105180198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/rev0000105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105180198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3324-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705894", 
              "https://doi.org/10.1007/978-1-4899-3324-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4899-3324-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109705894", 
              "https://doi.org/10.1007/978-1-4899-3324-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13423-018-1536-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109778940", 
              "https://doi.org/10.3758/s13423-018-1536-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-28", 
        "datePublishedReg": "2019-03-28", 
        "description": "Evidence accumulation models (EAMs) have become the dominant models of rapid decision-making. Several variants of these models have been proposed, ranging from the simple linear ballistic accumulator (LBA) to the more complex leaky-competing accumulator (LCA), and further extensions that include time-varying rates of evidence accumulation or decision thresholds. Although applications of the simpler variants have been widespread, applications of the more complex models have been fewer, largely due to their intractable likelihood function and the computational cost of mass simulation. Here, I present a framework for efficiently fitting complex EAMs, which uses a new, efficient method of simulating these models. I find that the majority of simulation time is taken up by random number generation (RNG) from the normal distribution, needed for the stochastic noise of the differential equation. To reduce this inefficiency, I propose using the well-known concept within computer science of \"look-up tables\" (LUTs) as an approximation to the inverse cumulative density function (iCDF) method of RNG, which I call \"LUT-iCDF\". I show that when using an appropriately sized LUT, simulations using LUT-iCDF closely match those from the standard RNG method in R. My framework, which I provide a detailed tutorial on how to implement, includes C code for 12 different variants of EAMs using the LUT-iCDF method, and should make the implementation of complex EAMs easier and faster.", 
        "genre": "research_article", 
        "id": "sg:pub.10.3758/s13428-019-01219-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1319746", 
            "issn": [
              "1554-351X", 
              "1532-5970"
            ], 
            "name": "Behavior Research Methods", 
            "type": "Periodical"
          }
        ], 
        "name": "A method, framework, and tutorial for efficiently simulating models of decision-making", 
        "pagination": "1-15", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "a5e1142bef2d946c35da942780b4295dddc97a52f392be9aff13a1aaeca05014"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30924105"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101244316"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3758/s13428-019-01219-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1113057431"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3758/s13428-019-01219-z", 
          "https://app.dimensions.ai/details/publication/pub.1113057431"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T13:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78968_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.3758%2Fs13428-019-01219-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01219-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01219-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01219-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01219-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    219 TRIPLES      21 PREDICATES      73 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3758/s13428-019-01219-z schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N8db43b837453446db1df8c9d97186701
    4 schema:citation sg:pub.10.1007/978-1-4899-3324-9
    5 sg:pub.10.1007/bf02289729
    6 sg:pub.10.1038/363345a0
    7 sg:pub.10.1038/s41598-017-16694-7
    8 sg:pub.10.3758/bf03192967
    9 sg:pub.10.3758/bf03196302
    10 sg:pub.10.3758/brm.41.4.1095
    11 sg:pub.10.3758/pbr.16.6.1129
    12 sg:pub.10.3758/s13421-017-0718-z
    13 sg:pub.10.3758/s13423-011-0189-3
    14 sg:pub.10.3758/s13423-013-0530-0
    15 sg:pub.10.3758/s13423-016-1135-1
    16 sg:pub.10.3758/s13423-018-1536-4
    17 sg:pub.10.3758/s13428-017-0887-5
    18 sg:pub.10.3758/s13428-017-0901-y
    19 https://doi.org/10.1016/0959-4388(94)90059-0
    20 https://doi.org/10.1016/j.cogpsych.2007.12.002
    21 https://doi.org/10.1016/j.cogpsych.2014.03.002
    22 https://doi.org/10.1016/j.cogpsych.2015.11.002
    23 https://doi.org/10.1016/j.jad.2013.10.025
    24 https://doi.org/10.1016/j.jmp.2015.08.006
    25 https://doi.org/10.1016/j.jmp.2015.09.002
    26 https://doi.org/10.1016/j.jmp.2016.12.001
    27 https://doi.org/10.1016/j.jmp.2017.09.005
    28 https://doi.org/10.1016/j.neuron.2010.12.037
    29 https://doi.org/10.1037/0033-295x.108.3.550
    30 https://doi.org/10.1037/0033-295x.115.2.396
    31 https://doi.org/10.1037/0033-295x.85.2.59
    32 https://doi.org/10.1037/a0020311
    33 https://doi.org/10.1037/a0020580
    34 https://doi.org/10.1037/a0030543
    35 https://doi.org/10.1037/rev0000057
    36 https://doi.org/10.1037/rev0000089
    37 https://doi.org/10.1037/rev0000105
    38 https://doi.org/10.1088/0954-898x_2_3_003
    39 https://doi.org/10.1111/1467-9280.00067
    40 https://doi.org/10.1111/cogs.12094
    41 https://doi.org/10.1111/cogs.12627
    42 https://doi.org/10.1111/j.1460-9568.2006.05221.x
    43 https://doi.org/10.1152/jn.00088.2015
    44 https://doi.org/10.1152/jn.01071.2011
    45 https://doi.org/10.1523/jneurosci.0309-11.2011
    46 https://doi.org/10.1523/jneurosci.13-01-00334.1993
    47 https://doi.org/10.1523/jneurosci.1844-09.2009
    48 https://doi.org/10.1523/jneurosci.22-21-09475.2002
    49 https://doi.org/10.1523/jneurosci.2410-14.2015
    50 https://doi.org/10.1523/jneurosci.4010-11.2012
    51 schema:datePublished 2019-03-28
    52 schema:datePublishedReg 2019-03-28
    53 schema:description Evidence accumulation models (EAMs) have become the dominant models of rapid decision-making. Several variants of these models have been proposed, ranging from the simple linear ballistic accumulator (LBA) to the more complex leaky-competing accumulator (LCA), and further extensions that include time-varying rates of evidence accumulation or decision thresholds. Although applications of the simpler variants have been widespread, applications of the more complex models have been fewer, largely due to their intractable likelihood function and the computational cost of mass simulation. Here, I present a framework for efficiently fitting complex EAMs, which uses a new, efficient method of simulating these models. I find that the majority of simulation time is taken up by random number generation (RNG) from the normal distribution, needed for the stochastic noise of the differential equation. To reduce this inefficiency, I propose using the well-known concept within computer science of "look-up tables" (LUTs) as an approximation to the inverse cumulative density function (iCDF) method of RNG, which I call "LUT-iCDF". I show that when using an appropriately sized LUT, simulations using LUT-iCDF closely match those from the standard RNG method in R. My framework, which I provide a detailed tutorial on how to implement, includes C code for 12 different variants of EAMs using the LUT-iCDF method, and should make the implementation of complex EAMs easier and faster.
    54 schema:genre research_article
    55 schema:inLanguage en
    56 schema:isAccessibleForFree false
    57 schema:isPartOf sg:journal.1319746
    58 schema:name A method, framework, and tutorial for efficiently simulating models of decision-making
    59 schema:pagination 1-15
    60 schema:productId N5091387d47804c9aaa1ff1a1aa712f12
    61 N8853932ca41745699ad19621d3a27382
    62 Na9a7d79ece664a88a0610f708b960a4a
    63 Nb6444f91caa24a0baec0afd360b8e240
    64 Ncfce358b92814bfbbec5a4987f1142d1
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113057431
    66 https://doi.org/10.3758/s13428-019-01219-z
    67 schema:sdDatePublished 2019-04-11T13:20
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher Naee13500dc0340fb8e6db96f177e47dc
    70 schema:url https://link.springer.com/10.3758%2Fs13428-019-01219-z
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N0b1ddbd84cd3489782c8bfc56cfd2a02 schema:affiliation https://www.grid.ac/institutes/grid.152326.1
    75 schema:familyName Evans
    76 schema:givenName Nathan J.
    77 rdf:type schema:Person
    78 N5091387d47804c9aaa1ff1a1aa712f12 schema:name readcube_id
    79 schema:value a5e1142bef2d946c35da942780b4295dddc97a52f392be9aff13a1aaeca05014
    80 rdf:type schema:PropertyValue
    81 N8853932ca41745699ad19621d3a27382 schema:name nlm_unique_id
    82 schema:value 101244316
    83 rdf:type schema:PropertyValue
    84 N8db43b837453446db1df8c9d97186701 rdf:first N0b1ddbd84cd3489782c8bfc56cfd2a02
    85 rdf:rest rdf:nil
    86 Na9a7d79ece664a88a0610f708b960a4a schema:name dimensions_id
    87 schema:value pub.1113057431
    88 rdf:type schema:PropertyValue
    89 Naee13500dc0340fb8e6db96f177e47dc schema:name Springer Nature - SN SciGraph project
    90 rdf:type schema:Organization
    91 Nb6444f91caa24a0baec0afd360b8e240 schema:name pubmed_id
    92 schema:value 30924105
    93 rdf:type schema:PropertyValue
    94 Ncfce358b92814bfbbec5a4987f1142d1 schema:name doi
    95 schema:value 10.3758/s13428-019-01219-z
    96 rdf:type schema:PropertyValue
    97 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Mathematical Sciences
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Statistics
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1319746 schema:issn 1532-5970
    104 1554-351X
    105 schema:name Behavior Research Methods
    106 rdf:type schema:Periodical
    107 sg:pub.10.1007/978-1-4899-3324-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705894
    108 https://doi.org/10.1007/978-1-4899-3324-9
    109 rdf:type schema:CreativeWork
    110 sg:pub.10.1007/bf02289729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024527739
    111 https://doi.org/10.1007/bf02289729
    112 rdf:type schema:CreativeWork
    113 sg:pub.10.1038/363345a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033564522
    114 https://doi.org/10.1038/363345a0
    115 rdf:type schema:CreativeWork
    116 sg:pub.10.1038/s41598-017-16694-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092869969
    117 https://doi.org/10.1038/s41598-017-16694-7
    118 rdf:type schema:CreativeWork
    119 sg:pub.10.3758/bf03192967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027202776
    120 https://doi.org/10.3758/bf03192967
    121 rdf:type schema:CreativeWork
    122 sg:pub.10.3758/bf03196302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019981711
    123 https://doi.org/10.3758/bf03196302
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.3758/brm.41.4.1095 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042004778
    126 https://doi.org/10.3758/brm.41.4.1095
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.3758/pbr.16.6.1129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046454206
    129 https://doi.org/10.3758/pbr.16.6.1129
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.3758/s13421-017-0718-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1085862779
    132 https://doi.org/10.3758/s13421-017-0718-z
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.3758/s13423-011-0189-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009050943
    135 https://doi.org/10.3758/s13423-011-0189-3
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.3758/s13423-013-0530-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021370895
    138 https://doi.org/10.3758/s13423-013-0530-0
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.3758/s13423-016-1135-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005287711
    141 https://doi.org/10.3758/s13423-016-1135-1
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.3758/s13423-018-1536-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109778940
    144 https://doi.org/10.3758/s13423-018-1536-4
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.3758/s13428-017-0887-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085092456
    147 https://doi.org/10.3758/s13428-017-0887-5
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.3758/s13428-017-0901-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085939959
    150 https://doi.org/10.3758/s13428-017-0901-y
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/0959-4388(94)90059-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050126866
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.cogpsych.2007.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025294361
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.cogpsych.2014.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035520922
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.cogpsych.2015.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026800931
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.jad.2013.10.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004798849
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.jmp.2015.08.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010401093
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.jmp.2015.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022642470
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/j.jmp.2016.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049669969
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/j.jmp.2017.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092331376
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1016/j.neuron.2010.12.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044765169
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1037/0033-295x.108.3.550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026026984
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1037/0033-295x.115.2.396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015138044
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1037/0033-295x.85.2.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026981133
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1037/a0020311 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052242096
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1037/a0020580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021796950
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1037/a0030543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042202252
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1037/rev0000057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083404848
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1037/rev0000089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099939057
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1037/rev0000105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105180198
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1088/0954-898x_2_3_003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059115877
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1111/1467-9280.00067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021131894
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1111/cogs.12094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025363586
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1111/cogs.12627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104407400
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1111/j.1460-9568.2006.05221.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006242878
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1152/jn.00088.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009254413
    201 rdf:type schema:CreativeWork
    202 https://doi.org/10.1152/jn.01071.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050075916
    203 rdf:type schema:CreativeWork
    204 https://doi.org/10.1523/jneurosci.0309-11.2011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010602550
    205 rdf:type schema:CreativeWork
    206 https://doi.org/10.1523/jneurosci.13-01-00334.1993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082800820
    207 rdf:type schema:CreativeWork
    208 https://doi.org/10.1523/jneurosci.1844-09.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014014748
    209 rdf:type schema:CreativeWork
    210 https://doi.org/10.1523/jneurosci.22-21-09475.2002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075186227
    211 rdf:type schema:CreativeWork
    212 https://doi.org/10.1523/jneurosci.2410-14.2015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016730781
    213 rdf:type schema:CreativeWork
    214 https://doi.org/10.1523/jneurosci.4010-11.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013310973
    215 rdf:type schema:CreativeWork
    216 https://www.grid.ac/institutes/grid.152326.1 schema:alternateName Vanderbilt University
    217 schema:name Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
    218 Department of Psychology, Vanderbilt University, Nashville, TN, USA
    219 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...