Implementing a concept network model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-19

AUTHORS

Sarah H. Solomon, John D. Medaglia, Sharon L. Thompson-Schill

ABSTRACT

The same concept can mean different things or be instantiated in different forms, depending on context, suggesting a degree of flexibility within the conceptual system. We propose that a feature-based network model can be used to capture and predict this flexibility. We modeled individual concepts (e.g., BANANA, BOTTLE) as graph-theoretical networks, in which properties (e.g., YELLOW, SWEET) were represented as nodes and their associations as edges. In this framework, networks capture within-concept statistics that reflect how properties relate to one another across instances of a concept. We extracted formal measures of these networks that capture different aspects of network structure, and explored whether a concept's network structure relates to its flexibility of use. To do so, we compared network measures to a text-based measure of semantic diversity, as well as to empirical data from a figurative-language task and an alternative-uses task. We found that network-based measures were predictive of the text-based and empirical measures of flexible concept use, highlighting the ability of this approach to formally capture relevant characteristics of conceptual structure. Conceptual flexibility is a fundamental attribute of the cognitive and semantic systems, and in this proof of concept we reveal that variations in concept representation and use can be formally understood in terms of the informational content and topology of concept networks. More... »

PAGES

1-20

Identifiers

URI

http://scigraph.springernature.com/pub.10.3758/s13428-019-01217-1

DOI

http://dx.doi.org/10.3758/s13428-019-01217-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112880864

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30891712


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solomon", 
        "givenName": "Sarah H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Drexel University", 
          "id": "https://www.grid.ac/institutes/grid.166341.7", 
          "name": [
            "Department of Psychology, Drexel University, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Medaglia", 
        "givenName": "John D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Pennsylvania", 
          "id": "https://www.grid.ac/institutes/grid.25879.31", 
          "name": [
            "Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thompson-Schill", 
        "givenName": "Sharon L.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0022-5371(69)80069-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001800673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.104.2.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004059775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2013.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005687110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/s13428-012-0278-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006429351", 
          "https://doi.org/10.3758/s13428-012-0278-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physrep.2005.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006977567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1420315112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007007751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nn.3690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007014462", 
          "https://doi.org/10.1038/nn.3690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1021928914454", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007445903", 
          "https://doi.org/10.1023/a:1021928914454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.84.4.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010221410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03213193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012724433", 
          "https://doi.org/10.3758/bf03213193"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.19.2.295", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013601852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15516709cog2901_3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013933522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/089892998563798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014407477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1364-6613(00)01651-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018237206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.114.2.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020079746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.32.4.643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021427806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10579-007-9044-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021449358", 
          "https://doi.org/10.1007/s10579-007-9044-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10579-007-9044-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021449358", 
          "https://doi.org/10.1007/s10579-007-9044-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1162/002438998553752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021562233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.10.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022342218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1018985108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026186841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0036351", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026443459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858406293182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028082387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1073858406293182", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028082387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-8733(99)00019-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029659870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/a0038693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032733268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0087323", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034346065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.03.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034473431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.92.3.289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035181590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0079-7421(03)45002-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035640245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.0333-10.2010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036925234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15516709cog2303_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038320583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-0277(00)00113-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038471915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2014.00407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038609100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/s13423-015-0832-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039767080", 
          "https://doi.org/10.3758/s13423-015-0832-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2187836.2187907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040765800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jml.2005.02.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041202118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041644347", 
          "https://doi.org/10.1038/nrn1076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn1076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041644347", 
          "https://doi.org/10.1038/nrn1076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041985305", 
          "https://doi.org/10.1038/30918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2013.07.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042300363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspb.2001.1800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045354190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15516709cog2801_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047596453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15516709cog2801_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047596453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jamapsychiatry.2013.1328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047797358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.82.6.407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048866511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/s13423-015-0948-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049169138", 
          "https://doi.org/10.3758/s13423-015-0948-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/s13423-015-0948-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049169138", 
          "https://doi.org/10.3758/s13423-015-0948-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03197629", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049265134", 
          "https://doi.org/10.3758/bf03197629"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2005.1645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049791651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/xge0000192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051301816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/xge0000192", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051301816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1003171", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051704848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrn.2016.150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052218048", 
          "https://doi.org/10.1038/nrn.2016.150"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15516709cog2202_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052855760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0096-3445.126.2.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056368396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41562-017-0260-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099694386", 
          "https://doi.org/10.1038/s41562-017-0260-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41562-017-0260-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099694386", 
          "https://doi.org/10.1038/s41562-017-0260-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41562-017-0260-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099694386", 
          "https://doi.org/10.1038/s41562-017-0260-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2018.2798928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101393419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/rev0000094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103847924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/rev0000094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103847924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wcs.1471", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105291231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7551/mitpress/9383.003.0031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111387974"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-19", 
    "datePublishedReg": "2019-03-19", 
    "description": "The same concept can mean different things or be instantiated in different forms, depending on context, suggesting a degree of flexibility within the conceptual system. We propose that a feature-based network model can be used to capture and predict this flexibility. We modeled individual concepts (e.g., BANANA, BOTTLE) as graph-theoretical networks, in which properties (e.g., YELLOW, SWEET) were represented as nodes and their associations as edges. In this framework, networks capture within-concept statistics that reflect how properties relate to one another across instances of a concept. We extracted formal measures of these networks that capture different aspects of network structure, and explored whether a concept's network structure relates to its flexibility of use. To do so, we compared network measures to a text-based measure of semantic diversity, as well as to empirical data from a figurative-language task and an alternative-uses task. We found that network-based measures were predictive of the text-based and empirical measures of flexible concept use, highlighting the ability of this approach to formally capture relevant characteristics of conceptual structure. Conceptual flexibility is a fundamental attribute of the cognitive and semantic systems, and in this proof of concept we reveal that variations in concept representation and use can be formally understood in terms of the informational content and topology of concept networks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3758/s13428-019-01217-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.5053419", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1319746", 
        "issn": [
          "1554-351X", 
          "1532-5970"
        ], 
        "name": "Behavior Research Methods", 
        "type": "Periodical"
      }
    ], 
    "name": "Implementing a concept network model", 
    "pagination": "1-20", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dd465fd95d01a9e0611ccc0c41551c9675f5f268d86f48aacdb082a0d08b1e2f"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30891712"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101244316"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3758/s13428-019-01217-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112880864"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3758/s13428-019-01217-1", 
      "https://app.dimensions.ai/details/publication/pub.1112880864"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000370_0000000370/records_46766_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3758%2Fs13428-019-01217-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01217-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01217-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01217-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01217-1'


 

This table displays all metadata directly associated to this object as RDF triples.

256 TRIPLES      21 PREDICATES      81 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3758/s13428-019-01217-1 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N3fdd90c684cc45728098a57f8d727154
4 schema:citation sg:pub.10.1007/s10579-007-9044-6
5 sg:pub.10.1023/a:1021928914454
6 sg:pub.10.1038/30918
7 sg:pub.10.1038/nn.3690
8 sg:pub.10.1038/nrn.2016.150
9 sg:pub.10.1038/nrn1076
10 sg:pub.10.1038/s41562-017-0260-9
11 sg:pub.10.3758/bf03197629
12 sg:pub.10.3758/bf03213193
13 sg:pub.10.3758/s13423-015-0832-5
14 sg:pub.10.3758/s13423-015-0948-7
15 sg:pub.10.3758/s13428-012-0278-x
16 https://doi.org/10.1001/jamapsychiatry.2013.1328
17 https://doi.org/10.1002/wcs.1471
18 https://doi.org/10.1016/j.jml.2005.02.002
19 https://doi.org/10.1016/j.neuroimage.2009.10.003
20 https://doi.org/10.1016/j.neuroimage.2011.03.069
21 https://doi.org/10.1016/j.neuron.2013.07.035
22 https://doi.org/10.1016/j.physrep.2005.10.009
23 https://doi.org/10.1016/j.tics.2013.09.012
24 https://doi.org/10.1016/s0010-0277(00)00113-x
25 https://doi.org/10.1016/s0022-5371(69)80069-1
26 https://doi.org/10.1016/s0079-7421(03)45002-0
27 https://doi.org/10.1016/s0378-8733(99)00019-2
28 https://doi.org/10.1016/s1364-6613(00)01651-x
29 https://doi.org/10.1037/0033-295x.104.2.211
30 https://doi.org/10.1037/0033-295x.114.2.211
31 https://doi.org/10.1037/0033-295x.82.6.407
32 https://doi.org/10.1037/0033-295x.84.4.327
33 https://doi.org/10.1037/0033-295x.92.3.289
34 https://doi.org/10.1037/0096-3445.126.2.99
35 https://doi.org/10.1037/0278-7393.19.2.295
36 https://doi.org/10.1037/0278-7393.32.4.643
37 https://doi.org/10.1037/a0038693
38 https://doi.org/10.1037/h0036351
39 https://doi.org/10.1037/h0087323
40 https://doi.org/10.1037/rev0000094
41 https://doi.org/10.1037/xge0000192
42 https://doi.org/10.1073/pnas.1018985108
43 https://doi.org/10.1073/pnas.1420315112
44 https://doi.org/10.1098/rspb.2001.1800
45 https://doi.org/10.1098/rstb.2005.1645
46 https://doi.org/10.1109/jproc.2018.2798928
47 https://doi.org/10.1145/2187836.2187907
48 https://doi.org/10.1162/002438998553752
49 https://doi.org/10.1162/089892998563798
50 https://doi.org/10.1177/1073858406293182
51 https://doi.org/10.1207/s15516709cog2202_2
52 https://doi.org/10.1207/s15516709cog2303_4
53 https://doi.org/10.1207/s15516709cog2801_4
54 https://doi.org/10.1207/s15516709cog2901_3
55 https://doi.org/10.1371/journal.pcbi.1003171
56 https://doi.org/10.1523/jneurosci.0333-10.2010
57 https://doi.org/10.3389/fnhum.2014.00407
58 https://doi.org/10.7551/mitpress/9383.003.0031
59 schema:datePublished 2019-03-19
60 schema:datePublishedReg 2019-03-19
61 schema:description The same concept can mean different things or be instantiated in different forms, depending on context, suggesting a degree of flexibility within the conceptual system. We propose that a feature-based network model can be used to capture and predict this flexibility. We modeled individual concepts (e.g., BANANA, BOTTLE) as graph-theoretical networks, in which properties (e.g., YELLOW, SWEET) were represented as nodes and their associations as edges. In this framework, networks capture within-concept statistics that reflect how properties relate to one another across instances of a concept. We extracted formal measures of these networks that capture different aspects of network structure, and explored whether a concept's network structure relates to its flexibility of use. To do so, we compared network measures to a text-based measure of semantic diversity, as well as to empirical data from a figurative-language task and an alternative-uses task. We found that network-based measures were predictive of the text-based and empirical measures of flexible concept use, highlighting the ability of this approach to formally capture relevant characteristics of conceptual structure. Conceptual flexibility is a fundamental attribute of the cognitive and semantic systems, and in this proof of concept we reveal that variations in concept representation and use can be formally understood in terms of the informational content and topology of concept networks.
62 schema:genre research_article
63 schema:inLanguage en
64 schema:isAccessibleForFree false
65 schema:isPartOf sg:journal.1319746
66 schema:name Implementing a concept network model
67 schema:pagination 1-20
68 schema:productId N21487bcd9d864fd187d0f92b6ed3f96a
69 N3aaf5bb584d045bb88db3af3d783ea34
70 N45ec0e74f00b48b2838a93781eead51f
71 Na135088a3dc44c5b9c5fb68e6750ef57
72 Ncd6fa35e4ad647168ee273f1c304581f
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112880864
74 https://doi.org/10.3758/s13428-019-01217-1
75 schema:sdDatePublished 2019-04-11T13:33
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N3d02c2826d7e4db4826e5c6a102b0b8b
78 schema:url https://link.springer.com/10.3758%2Fs13428-019-01217-1
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N21487bcd9d864fd187d0f92b6ed3f96a schema:name pubmed_id
83 schema:value 30891712
84 rdf:type schema:PropertyValue
85 N22547efd555a4267976662aba3fbcb4b rdf:first Nba5f20fcdb8547d3affddf51062b5f3d
86 rdf:rest rdf:nil
87 N2fc0f2c8f68c4b9680f5b60dd5de1ad7 schema:affiliation https://www.grid.ac/institutes/grid.166341.7
88 schema:familyName Medaglia
89 schema:givenName John D.
90 rdf:type schema:Person
91 N3aaf5bb584d045bb88db3af3d783ea34 schema:name readcube_id
92 schema:value dd465fd95d01a9e0611ccc0c41551c9675f5f268d86f48aacdb082a0d08b1e2f
93 rdf:type schema:PropertyValue
94 N3d02c2826d7e4db4826e5c6a102b0b8b schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N3fdd90c684cc45728098a57f8d727154 rdf:first N4bb0a4100b794d709ae929ed1b6e5d3f
97 rdf:rest Nf0fbe0e48c7641f0ad7728d3ee28a1d6
98 N45ec0e74f00b48b2838a93781eead51f schema:name nlm_unique_id
99 schema:value 101244316
100 rdf:type schema:PropertyValue
101 N4bb0a4100b794d709ae929ed1b6e5d3f schema:affiliation https://www.grid.ac/institutes/grid.25879.31
102 schema:familyName Solomon
103 schema:givenName Sarah H.
104 rdf:type schema:Person
105 Na135088a3dc44c5b9c5fb68e6750ef57 schema:name dimensions_id
106 schema:value pub.1112880864
107 rdf:type schema:PropertyValue
108 Nba5f20fcdb8547d3affddf51062b5f3d schema:affiliation https://www.grid.ac/institutes/grid.25879.31
109 schema:familyName Thompson-Schill
110 schema:givenName Sharon L.
111 rdf:type schema:Person
112 Ncd6fa35e4ad647168ee273f1c304581f schema:name doi
113 schema:value 10.3758/s13428-019-01217-1
114 rdf:type schema:PropertyValue
115 Nf0fbe0e48c7641f0ad7728d3ee28a1d6 rdf:first N2fc0f2c8f68c4b9680f5b60dd5de1ad7
116 rdf:rest N22547efd555a4267976662aba3fbcb4b
117 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
118 schema:name Information and Computing Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
121 schema:name Information Systems
122 rdf:type schema:DefinedTerm
123 sg:grant.5053419 http://pending.schema.org/fundedItem sg:pub.10.3758/s13428-019-01217-1
124 rdf:type schema:MonetaryGrant
125 sg:journal.1319746 schema:issn 1532-5970
126 1554-351X
127 schema:name Behavior Research Methods
128 rdf:type schema:Periodical
129 sg:pub.10.1007/s10579-007-9044-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021449358
130 https://doi.org/10.1007/s10579-007-9044-6
131 rdf:type schema:CreativeWork
132 sg:pub.10.1023/a:1021928914454 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007445903
133 https://doi.org/10.1023/a:1021928914454
134 rdf:type schema:CreativeWork
135 sg:pub.10.1038/30918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041985305
136 https://doi.org/10.1038/30918
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/nn.3690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007014462
139 https://doi.org/10.1038/nn.3690
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/nrn.2016.150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052218048
142 https://doi.org/10.1038/nrn.2016.150
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/nrn1076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041644347
145 https://doi.org/10.1038/nrn1076
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/s41562-017-0260-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099694386
148 https://doi.org/10.1038/s41562-017-0260-9
149 rdf:type schema:CreativeWork
150 sg:pub.10.3758/bf03197629 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049265134
151 https://doi.org/10.3758/bf03197629
152 rdf:type schema:CreativeWork
153 sg:pub.10.3758/bf03213193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012724433
154 https://doi.org/10.3758/bf03213193
155 rdf:type schema:CreativeWork
156 sg:pub.10.3758/s13423-015-0832-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039767080
157 https://doi.org/10.3758/s13423-015-0832-5
158 rdf:type schema:CreativeWork
159 sg:pub.10.3758/s13423-015-0948-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049169138
160 https://doi.org/10.3758/s13423-015-0948-7
161 rdf:type schema:CreativeWork
162 sg:pub.10.3758/s13428-012-0278-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006429351
163 https://doi.org/10.3758/s13428-012-0278-x
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1001/jamapsychiatry.2013.1328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047797358
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/wcs.1471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105291231
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.jml.2005.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041202118
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.neuroimage.2009.10.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022342218
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.neuroimage.2011.03.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034473431
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.neuron.2013.07.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042300363
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.physrep.2005.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006977567
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.tics.2013.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005687110
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/s0010-0277(00)00113-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038471915
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0022-5371(69)80069-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001800673
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0079-7421(03)45002-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035640245
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/s0378-8733(99)00019-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029659870
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/s1364-6613(00)01651-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018237206
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1037/0033-295x.104.2.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004059775
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1037/0033-295x.114.2.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020079746
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1037/0033-295x.82.6.407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048866511
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1037/0033-295x.84.4.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010221410
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1037/0033-295x.92.3.289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035181590
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1037/0096-3445.126.2.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056368396
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1037/0278-7393.19.2.295 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013601852
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1037/0278-7393.32.4.643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021427806
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1037/a0038693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032733268
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1037/h0036351 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026443459
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1037/h0087323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034346065
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1037/rev0000094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103847924
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1037/xge0000192 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051301816
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1073/pnas.1018985108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026186841
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1073/pnas.1420315112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007007751
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1098/rspb.2001.1800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045354190
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1098/rstb.2005.1645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049791651
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1109/jproc.2018.2798928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101393419
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1145/2187836.2187907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040765800
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1162/002438998553752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021562233
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1162/089892998563798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014407477
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1177/1073858406293182 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028082387
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1207/s15516709cog2202_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052855760
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1207/s15516709cog2303_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038320583
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1207/s15516709cog2801_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047596453
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1207/s15516709cog2901_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013933522
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1371/journal.pcbi.1003171 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051704848
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1523/jneurosci.0333-10.2010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036925234
246 rdf:type schema:CreativeWork
247 https://doi.org/10.3389/fnhum.2014.00407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038609100
248 rdf:type schema:CreativeWork
249 https://doi.org/10.7551/mitpress/9383.003.0031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111387974
250 rdf:type schema:CreativeWork
251 https://www.grid.ac/institutes/grid.166341.7 schema:alternateName Drexel University
252 schema:name Department of Psychology, Drexel University, Philadelphia, PA, USA
253 rdf:type schema:Organization
254 https://www.grid.ac/institutes/grid.25879.31 schema:alternateName University of Pennsylvania
255 schema:name Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
256 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...