Cross-modal associations and synesthesia: Categorical perception and structure in vowel-color mappings in a large online sample. View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04-03

AUTHORS

Christine Cuskley, Mark Dingemanse, Simon Kirby, Tessa M van Leeuwen

ABSTRACT

We report associations between vowel sounds, graphemes, and colors collected online from over 1,000 Dutch speakers. We also provide open materials, including a Python implementation of the structure measure and code for a single-page web application to run simple cross-modal tasks. We also provide a full dataset of color-vowel associations from 1,164 participants, including over 200 synesthetes identified using consistency measures. Our analysis reveals salient patterns in the cross-modal associations and introduces a novel measure of isomorphism in cross-modal mappings. We found that, while the acoustic features of vowels significantly predict certain mappings (replicating prior work), both vowel phoneme category and grapheme category are even better predictors of color choice. Phoneme category is the best predictor of color choice overall, pointing to the importance of phonological representations in addition to acoustic cues. Generally, high/front vowels are lighter, more green, and more yellow than low/back vowels. Synesthetes respond more strongly on some dimensions, choosing lighter and more yellow colors for high and mid front vowels than do nonsynesthetes. We also present a novel measure of cross-modal mappings adapted from ecology, which uses a simulated distribution of mappings to measure the extent to which participants' actual mappings are structured isomorphically across modalities. Synesthetes have mappings that tend to be more structured than nonsynesthetes', and more consistent color choices across trials correlate with higher structure scores. Nevertheless, the large majority (~ 70%) of participants produce structured mappings, indicating that the capacity to make isomorphically structured mappings across distinct modalities is shared to a large extent, even if the exact nature of the mappings varies across individuals. Overall, this novel structure measure suggests a distribution of structured cross-modal association in the population, with synesthetes at one extreme and participants with unstructured associations at the other. More... »

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.3758/s13428-019-01203-7

DOI

http://dx.doi.org/10.3758/s13428-019-01203-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113182532

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30945162


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "Centre for Language Evolution, University of Edinburgh, Edinburgh, UK. ccuskley@gmail.com."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cuskley", 
        "givenName": "Christine", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands. mark.dingemanse@mpi.nl.", 
            "Centre for Language Studies, Radboud University, Nijmegen, The Netherlands. mark.dingemanse@mpi.nl."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dingemanse", 
        "givenName": "Mark", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "Centre for Language Evolution, University of Edinburgh, Edinburgh, UK."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirby", 
        "givenName": "Simon", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands."
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Leeuwen", 
        "givenName": "Tessa M", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.concog.2012.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001197698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797612452573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001925424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797612452573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001925424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rstb.2013.0298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003720959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0057410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007043563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/v10010-009-0028-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007486587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/v10010-009-0028-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007486587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2015.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009383583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuropsychologia.2011.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011564330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tics.2006.10.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011713557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00426-015-0709-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012012742", 
          "https://doi.org/10.1007/s00426-015-0709-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/2041-210x.12512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013359200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cognition.2007.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014308231"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/i0626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017346187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-9452(08)70352-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018610082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.concog.2011.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021259582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.82.3.303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022494653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fpsyg.2014.00369", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025426546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00437956.1949.11659507", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025668019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1348/000712610x528305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027034684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03208845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028428164", 
          "https://doi.org/10.3758/bf03208845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/col.20070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029827581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2006.07.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031299946"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wcs.26", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033029634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17588928.2015.1019441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034589782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0118996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034590485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797612457374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035624569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797612457374", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035624569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jneumeth.2013.02.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038646689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12930-014-0010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042933527", 
          "https://doi.org/10.1186/s12930-014-0010-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12930-014-0010-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042933527", 
          "https://doi.org/10.1186/s12930-014-0010-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/s13423-011-0208-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044054402", 
          "https://doi.org/10.3758/s13423-011-0208-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0707835105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044741456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1076/neur.8.3.338.16194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048301213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/22134808-00002511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048660027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02643290500200122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052096348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02643290500200122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052096348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2014.00509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053084599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/p251073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058163641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/p251073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058163641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/p5469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058164964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/p5469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058164964"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/p6591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058165512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1068/p6591", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058165512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-8721.00116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061834254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-8721.00116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061834254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1779271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062270352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18637/jss.v069.i01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068673043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081518966", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2041669517724807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091358475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/2041669517724807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091358475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1163/22134808-00002581", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091851720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198521389.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098774786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cortex.2017.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099666863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cortex.2017.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099666863"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04-03", 
    "datePublishedReg": "2019-04-03", 
    "description": "We report associations between vowel sounds, graphemes, and colors collected online from over 1,000 Dutch speakers. We also provide open materials, including a Python implementation of the structure measure and code for a single-page web application to run simple cross-modal tasks. We also provide a full dataset of color-vowel associations from 1,164 participants, including over 200 synesthetes identified using consistency measures. Our analysis reveals salient patterns in the cross-modal associations and introduces a novel measure of isomorphism in cross-modal mappings. We found that, while the acoustic features of vowels significantly predict certain mappings (replicating prior work), both vowel phoneme category and grapheme category are even better predictors of color choice. Phoneme category is the best predictor of color choice overall, pointing to the importance of phonological representations in addition to acoustic cues. Generally, high/front vowels are lighter, more green, and more yellow than low/back vowels. Synesthetes respond more strongly on some dimensions, choosing lighter and more yellow colors for high and mid front vowels than do nonsynesthetes. We also present a novel measure of cross-modal mappings adapted from ecology, which uses a simulated distribution of mappings to measure the extent to which participants' actual mappings are structured isomorphically across modalities. Synesthetes have mappings that tend to be more structured than nonsynesthetes', and more consistent color choices across trials correlate with higher structure scores. Nevertheless, the large majority (~ 70%) of participants produce structured mappings, indicating that the capacity to make isomorphically structured mappings across distinct modalities is shared to a large extent, even if the exact nature of the mappings varies across individuals. Overall, this novel structure measure suggests a distribution of structured cross-modal association in the population, with synesthetes at one extreme and participants with unstructured associations at the other.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3758/s13428-019-01203-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6626255", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1319746", 
        "issn": [
          "1554-351X", 
          "1532-5970"
        ], 
        "name": "Behavior Research Methods", 
        "type": "Periodical"
      }
    ], 
    "name": "Cross-modal associations and synesthesia: Categorical perception and structure in vowel-color mappings in a large online sample.", 
    "productId": [
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30945162"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101244316"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3758/s13428-019-01203-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113182532"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3758/s13428-019-01203-7", 
      "https://app.dimensions.ai/details/publication/pub.1113182532"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130814_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3758/s13428-019-01203-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01203-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01203-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01203-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/s13428-019-01203-7'


 

This table displays all metadata directly associated to this object as RDF triples.

218 TRIPLES      20 PREDICATES      68 URIs      16 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3758/s13428-019-01203-7 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author N725ccaf1643f417caf70909f3b8d814e
4 schema:citation sg:pub.10.1007/s00426-015-0709-2
5 sg:pub.10.1186/s12930-014-0010-3
6 sg:pub.10.3758/bf03208845
7 sg:pub.10.3758/s13423-011-0208-4
8 https://app.dimensions.ai/details/publication/pub.1081518966
9 https://doi.org/10.1002/col.20070
10 https://doi.org/10.1002/wcs.26
11 https://doi.org/10.1016/j.cognition.2007.09.001
12 https://doi.org/10.1016/j.concog.2011.05.012
13 https://doi.org/10.1016/j.concog.2012.02.005
14 https://doi.org/10.1016/j.cortex.2017.12.003
15 https://doi.org/10.1016/j.jneumeth.2006.07.012
16 https://doi.org/10.1016/j.jneumeth.2013.02.009
17 https://doi.org/10.1016/j.neuropsychologia.2011.01.002
18 https://doi.org/10.1016/j.tics.2006.10.010
19 https://doi.org/10.1016/j.tics.2015.07.013
20 https://doi.org/10.1016/s0010-9452(08)70352-6
21 https://doi.org/10.1037/0033-2909.82.3.303
22 https://doi.org/10.1068/i0626
23 https://doi.org/10.1068/p251073
24 https://doi.org/10.1068/p5469
25 https://doi.org/10.1068/p6591
26 https://doi.org/10.1073/pnas.0707835105
27 https://doi.org/10.1076/neur.8.3.338.16194
28 https://doi.org/10.1080/00437956.1949.11659507
29 https://doi.org/10.1080/02643290500200122
30 https://doi.org/10.1080/17588928.2015.1019441
31 https://doi.org/10.1093/acprof:oso/9780198521389.001.0001
32 https://doi.org/10.1098/rstb.2013.0298
33 https://doi.org/10.1111/1467-8721.00116
34 https://doi.org/10.1111/2041-210x.12512
35 https://doi.org/10.1121/1.1779271
36 https://doi.org/10.1163/22134808-00002511
37 https://doi.org/10.1163/22134808-00002581
38 https://doi.org/10.1177/0956797612452573
39 https://doi.org/10.1177/0956797612457374
40 https://doi.org/10.1177/2041669517724807
41 https://doi.org/10.1348/000712610x528305
42 https://doi.org/10.1371/journal.pone.0057410
43 https://doi.org/10.1371/journal.pone.0118996
44 https://doi.org/10.18637/jss.v069.i01
45 https://doi.org/10.2478/v10010-009-0028-0
46 https://doi.org/10.3389/fnhum.2014.00509
47 https://doi.org/10.3389/fpsyg.2014.00369
48 schema:datePublished 2019-04-03
49 schema:datePublishedReg 2019-04-03
50 schema:description We report associations between vowel sounds, graphemes, and colors collected online from over 1,000 Dutch speakers. We also provide open materials, including a Python implementation of the structure measure and code for a single-page web application to run simple cross-modal tasks. We also provide a full dataset of color-vowel associations from 1,164 participants, including over 200 synesthetes identified using consistency measures. Our analysis reveals salient patterns in the cross-modal associations and introduces a novel measure of isomorphism in cross-modal mappings. We found that, while the acoustic features of vowels significantly predict certain mappings (replicating prior work), both vowel phoneme category and grapheme category are even better predictors of color choice. Phoneme category is the best predictor of color choice overall, pointing to the importance of phonological representations in addition to acoustic cues. Generally, high/front vowels are lighter, more green, and more yellow than low/back vowels. Synesthetes respond more strongly on some dimensions, choosing lighter and more yellow colors for high and mid front vowels than do nonsynesthetes. We also present a novel measure of cross-modal mappings adapted from ecology, which uses a simulated distribution of mappings to measure the extent to which participants' actual mappings are structured isomorphically across modalities. Synesthetes have mappings that tend to be more structured than nonsynesthetes', and more consistent color choices across trials correlate with higher structure scores. Nevertheless, the large majority (~ 70%) of participants produce structured mappings, indicating that the capacity to make isomorphically structured mappings across distinct modalities is shared to a large extent, even if the exact nature of the mappings varies across individuals. Overall, this novel structure measure suggests a distribution of structured cross-modal association in the population, with synesthetes at one extreme and participants with unstructured associations at the other.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree false
54 schema:isPartOf sg:journal.1319746
55 schema:name Cross-modal associations and synesthesia: Categorical perception and structure in vowel-color mappings in a large online sample.
56 schema:productId N05f91f9b51734600b9f186745ccdc8bd
57 N15c723704f124388b49776f41af5f1dc
58 N6442e173a6cc476483464e3ed63a3342
59 N848ef023c01741bfb9360a1a97939fe1
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113182532
61 https://doi.org/10.3758/s13428-019-01203-7
62 schema:sdDatePublished 2019-04-11T13:56
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N92b0431e169f48d7a5aa184ffdd7e29a
65 schema:url http://link.springer.com/10.3758/s13428-019-01203-7
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N05f91f9b51734600b9f186745ccdc8bd schema:name doi
70 schema:value 10.3758/s13428-019-01203-7
71 rdf:type schema:PropertyValue
72 N15c723704f124388b49776f41af5f1dc schema:name nlm_unique_id
73 schema:value 101244316
74 rdf:type schema:PropertyValue
75 N51d76a53de0a4f2980fd1bd7a3c5aa4d schema:affiliation https://www.grid.ac/institutes/grid.4305.2
76 schema:familyName Kirby
77 schema:givenName Simon
78 rdf:type schema:Person
79 N5c443289f8b640089ceea1d72743fb70 rdf:first N626c59c1e5494b0591d720be4a41a145
80 rdf:rest rdf:nil
81 N626c59c1e5494b0591d720be4a41a145 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
82 schema:familyName van Leeuwen
83 schema:givenName Tessa M
84 rdf:type schema:Person
85 N6442e173a6cc476483464e3ed63a3342 schema:name dimensions_id
86 schema:value pub.1113182532
87 rdf:type schema:PropertyValue
88 N725ccaf1643f417caf70909f3b8d814e rdf:first N9ec2ae19eb4740198889ff29bccffd4a
89 rdf:rest N92291e23638d43598aecef99b1c94f8d
90 N848ef023c01741bfb9360a1a97939fe1 schema:name pubmed_id
91 schema:value 30945162
92 rdf:type schema:PropertyValue
93 N92291e23638d43598aecef99b1c94f8d rdf:first Nc52c20cacb784f9090cfd87d94d482d9
94 rdf:rest Nf855216207a449b79e9d9c9e3bfd2881
95 N92b0431e169f48d7a5aa184ffdd7e29a schema:name Springer Nature - SN SciGraph project
96 rdf:type schema:Organization
97 N9ec2ae19eb4740198889ff29bccffd4a schema:affiliation https://www.grid.ac/institutes/grid.4305.2
98 schema:familyName Cuskley
99 schema:givenName Christine
100 rdf:type schema:Person
101 Nc52c20cacb784f9090cfd87d94d482d9 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
102 schema:familyName Dingemanse
103 schema:givenName Mark
104 rdf:type schema:Person
105 Nf855216207a449b79e9d9c9e3bfd2881 rdf:first N51d76a53de0a4f2980fd1bd7a3c5aa4d
106 rdf:rest N5c443289f8b640089ceea1d72743fb70
107 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
108 schema:name Psychology and Cognitive Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
111 schema:name Psychology
112 rdf:type schema:DefinedTerm
113 sg:grant.6626255 http://pending.schema.org/fundedItem sg:pub.10.3758/s13428-019-01203-7
114 rdf:type schema:MonetaryGrant
115 sg:journal.1319746 schema:issn 1532-5970
116 1554-351X
117 schema:name Behavior Research Methods
118 rdf:type schema:Periodical
119 sg:pub.10.1007/s00426-015-0709-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012012742
120 https://doi.org/10.1007/s00426-015-0709-2
121 rdf:type schema:CreativeWork
122 sg:pub.10.1186/s12930-014-0010-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042933527
123 https://doi.org/10.1186/s12930-014-0010-3
124 rdf:type schema:CreativeWork
125 sg:pub.10.3758/bf03208845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028428164
126 https://doi.org/10.3758/bf03208845
127 rdf:type schema:CreativeWork
128 sg:pub.10.3758/s13423-011-0208-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044054402
129 https://doi.org/10.3758/s13423-011-0208-4
130 rdf:type schema:CreativeWork
131 https://app.dimensions.ai/details/publication/pub.1081518966 schema:CreativeWork
132 https://doi.org/10.1002/col.20070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029827581
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1002/wcs.26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033029634
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.cognition.2007.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014308231
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.concog.2011.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021259582
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.concog.2012.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001197698
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.cortex.2017.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099666863
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jneumeth.2006.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031299946
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jneumeth.2013.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038646689
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.neuropsychologia.2011.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011564330
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.tics.2006.10.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011713557
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.tics.2015.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009383583
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/s0010-9452(08)70352-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018610082
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1037/0033-2909.82.3.303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022494653
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1068/i0626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017346187
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1068/p251073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058163641
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1068/p5469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058164964
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1068/p6591 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058165512
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1073/pnas.0707835105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044741456
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1076/neur.8.3.338.16194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048301213
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1080/00437956.1949.11659507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025668019
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1080/02643290500200122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052096348
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1080/17588928.2015.1019441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034589782
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1093/acprof:oso/9780198521389.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098774786
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1098/rstb.2013.0298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003720959
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1111/1467-8721.00116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061834254
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/2041-210x.12512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013359200
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1121/1.1779271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062270352
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1163/22134808-00002511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048660027
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1163/22134808-00002581 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091851720
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1177/0956797612452573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001925424
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1177/0956797612457374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035624569
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1177/2041669517724807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091358475
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1348/000712610x528305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027034684
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1371/journal.pone.0057410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007043563
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1371/journal.pone.0118996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034590485
201 rdf:type schema:CreativeWork
202 https://doi.org/10.18637/jss.v069.i01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068673043
203 rdf:type schema:CreativeWork
204 https://doi.org/10.2478/v10010-009-0028-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007486587
205 rdf:type schema:CreativeWork
206 https://doi.org/10.3389/fnhum.2014.00509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053084599
207 rdf:type schema:CreativeWork
208 https://doi.org/10.3389/fpsyg.2014.00369 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025426546
209 rdf:type schema:CreativeWork
210 https://www.grid.ac/institutes/grid.4305.2 schema:alternateName University of Edinburgh
211 schema:name Centre for Language Evolution, University of Edinburgh, Edinburgh, UK.
212 Centre for Language Evolution, University of Edinburgh, Edinburgh, UK. ccuskley@gmail.com.
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
215 schema:name Centre for Language Studies, Radboud University, Nijmegen, The Netherlands. mark.dingemanse@mpi.nl.
216 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
217 Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands. mark.dingemanse@mpi.nl.
218 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...