Simple Bayesian testing of scientific expectations in linear regression models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-22

AUTHORS

J. Mulder, A. Olsson-Collentine

ABSTRACT

Scientific theories can often be formulated using equality and order constraints on the relative effects in a linear regression model. For example, it may be expected that the effect of the first predictor is larger than the effect of the second predictor, and the second predictor is expected to be larger than the third predictor. The goal is then to test such expectations against competing scientific expectations or theories. In this paper, a simple default Bayes factor test is proposed for testing multiple hypotheses with equality and order constraints on the effects of interest. The proposed testing criterion can be computed without requiring external prior information about the expected effects before observing the data. The method is implemented in R-package called 'lmhyp' which is freely downloadable and ready to use. The usability of the method and software is illustrated using empirical applications from the social and behavioral sciences. More... »

PAGES

1-14

Journal

TITLE

Behavior Research Methods

ISSUE

N/A

VOLUME

N/A

Author Affiliations

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3758/s13428-018-01196-9

    DOI

    http://dx.doi.org/10.3758/s13428-018-01196-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112945002

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30903562


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Tilburg University", 
              "id": "https://www.grid.ac/institutes/grid.12295.3d", 
              "name": [
                "Department of Methodology and Statistics, Tilburg University, Warrandelaan 1, Tilburg, The Netherlands", 
                "Jheronimus Academy of Data Science, Sint Janssingel 92, 5211 DA, \u2019s-Hertogenbosch, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mulder", 
            "givenName": "J.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Tilburg University", 
              "id": "https://www.grid.ac/institutes/grid.12295.3d", 
              "name": [
                "Department of Methodology and Statistics, Tilburg University, Warrandelaan 1, Tilburg, The Netherlands"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Olsson-Collentine", 
            "givenName": "A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.jmp.2012.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002395255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/a0022790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003568803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/a0022790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003568803"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2009.09.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010007733"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2016.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010366052"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fpsyg.2012.00002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013081088"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/009053604000000238", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013282294"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13423-012-0295-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017375361", 
              "https://doi.org/10.3758/s13423-012-0295-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/s13423-012-0295-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017375361", 
              "https://doi.org/10.3758/s13423-012-0295-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/a0020137", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018979438"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/1082-989x.10.4.477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019383010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/1082-989x.10.4.477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019383010"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.csda.2013.07.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022152583"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/17405629.2011.621799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025876504"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/met0000017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026134567"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/bf03194105", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028229859", 
              "https://doi.org/10.3758/bf03194105"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00273171.2012.734737", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029020109"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02564428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029553710", 
              "https://doi.org/10.1007/bf02564428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02564428", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029553710", 
              "https://doi.org/10.1007/bf02564428"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/pbr.16.2.225", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031194758", 
              "https://doi.org/10.3758/pbr.16.2.225"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0149206314525206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035506348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0149206314525206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035506348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/0149206314525206", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035506348"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmp.2014.09.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039179947"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jspi.2009.09.022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042366272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1192/bjp.bp.111.098970", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047524923"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/bmsp.12013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051258798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1995.10476572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/01621459.1996.10476668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058304951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/biomet/89.3.491", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059421188"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/esr/18.1.17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059572546"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/06-ba115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064389467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/aoms/1177693507", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064398619"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.18637/jss.v046.i02", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068672685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/met0000116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085938396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1080/00224545.2017.1341374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086037650"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/bmsp.12110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091410366"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11336-018-9615-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103782399", 
              "https://doi.org/10.1007/s11336-018-9615-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/18-ba1115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106083100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/18-ba1115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106083100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/18-ba1115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106083100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/18-ba1115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106083100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/18-ba1115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106083100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1214/18-ba1115", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106083100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1201/b11158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1108240709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02017.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02017.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1110458915"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-22", 
        "datePublishedReg": "2019-03-22", 
        "description": "Scientific theories can often be formulated using equality and order constraints on the relative effects in a linear regression model. For example, it may be expected that the effect of the first predictor is larger than the effect of the second predictor, and the second predictor is expected to be larger than the third predictor. The goal is then to test such expectations against competing scientific expectations or theories. In this paper, a simple default Bayes factor test is proposed for testing multiple hypotheses with equality and order constraints on the effects of interest. The proposed testing criterion can be computed without requiring external prior information about the expected effects before observing the data. The method is implemented in R-package called 'lmhyp' which is freely downloadable and ready to use. The usability of the method and software is illustrated using empirical applications from the social and behavioral sciences.", 
        "genre": "research_article", 
        "id": "sg:pub.10.3758/s13428-018-01196-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6947074", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1319746", 
            "issn": [
              "1554-351X", 
              "1532-5970"
            ], 
            "name": "Behavior Research Methods", 
            "type": "Periodical"
          }
        ], 
        "name": "Simple Bayesian testing of scientific expectations in linear regression models", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6b7fdb6824e035735e36db947325a37e76ea4f80d64a2b2e2891c4022c03e279"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30903562"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "101244316"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3758/s13428-018-01196-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112945002"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3758/s13428-018-01196-9", 
          "https://app.dimensions.ai/details/publication/pub.1112945002"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72865_00000001.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.3758%2Fs13428-018-01196-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/s13428-018-01196-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/s13428-018-01196-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/s13428-018-01196-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/s13428-018-01196-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    181 TRIPLES      21 PREDICATES      61 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3758/s13428-018-01196-9 schema:about anzsrc-for:17
    2 anzsrc-for:1701
    3 schema:author N9e6f799559a04bd6889c11aa9e262b4f
    4 schema:citation sg:pub.10.1007/bf02564428
    5 sg:pub.10.1007/s11336-018-9615-z
    6 sg:pub.10.3758/bf03194105
    7 sg:pub.10.3758/pbr.16.2.225
    8 sg:pub.10.3758/s13423-012-0295-x
    9 https://doi.org/10.1016/j.csda.2013.07.017
    10 https://doi.org/10.1016/j.jmp.2009.09.003
    11 https://doi.org/10.1016/j.jmp.2012.08.001
    12 https://doi.org/10.1016/j.jmp.2014.09.004
    13 https://doi.org/10.1016/j.jmp.2016.01.002
    14 https://doi.org/10.1016/j.jspi.2009.09.022
    15 https://doi.org/10.1037/1082-989x.10.4.477
    16 https://doi.org/10.1037/a0020137
    17 https://doi.org/10.1037/a0022790
    18 https://doi.org/10.1037/met0000017
    19 https://doi.org/10.1037/met0000116
    20 https://doi.org/10.1080/00224545.2017.1341374
    21 https://doi.org/10.1080/00273171.2012.734737
    22 https://doi.org/10.1080/01621459.1995.10476572
    23 https://doi.org/10.1080/01621459.1996.10476668
    24 https://doi.org/10.1080/17405629.2011.621799
    25 https://doi.org/10.1093/biomet/89.3.491
    26 https://doi.org/10.1093/esr/18.1.17
    27 https://doi.org/10.1111/bmsp.12013
    28 https://doi.org/10.1111/bmsp.12110
    29 https://doi.org/10.1111/j.2517-6161.1995.tb02017.x
    30 https://doi.org/10.1177/0149206314525206
    31 https://doi.org/10.1192/bjp.bp.111.098970
    32 https://doi.org/10.1201/b11158
    33 https://doi.org/10.1214/009053604000000238
    34 https://doi.org/10.1214/06-ba115
    35 https://doi.org/10.1214/18-ba1115
    36 https://doi.org/10.1214/aoms/1177693507
    37 https://doi.org/10.18637/jss.v046.i02
    38 https://doi.org/10.3389/fpsyg.2012.00002
    39 schema:datePublished 2019-03-22
    40 schema:datePublishedReg 2019-03-22
    41 schema:description Scientific theories can often be formulated using equality and order constraints on the relative effects in a linear regression model. For example, it may be expected that the effect of the first predictor is larger than the effect of the second predictor, and the second predictor is expected to be larger than the third predictor. The goal is then to test such expectations against competing scientific expectations or theories. In this paper, a simple default Bayes factor test is proposed for testing multiple hypotheses with equality and order constraints on the effects of interest. The proposed testing criterion can be computed without requiring external prior information about the expected effects before observing the data. The method is implemented in R-package called 'lmhyp' which is freely downloadable and ready to use. The usability of the method and software is illustrated using empirical applications from the social and behavioral sciences.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree false
    45 schema:isPartOf sg:journal.1319746
    46 schema:name Simple Bayesian testing of scientific expectations in linear regression models
    47 schema:pagination 1-14
    48 schema:productId N091b1815969040b38c2eb78824a87c48
    49 N3dff0698733f4083ba07337f7e04df87
    50 N5f30d4c1fdc943d4be961d125c0149d9
    51 N6d0f8b21e41846379ca85b9f775c23c6
    52 Ne9bf2a20104e4005a7e92ecaa3a26e82
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112945002
    54 https://doi.org/10.3758/s13428-018-01196-9
    55 schema:sdDatePublished 2019-04-11T12:54
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher N97cd7cbe3e5148629aa49a56c4cda205
    58 schema:url https://link.springer.com/10.3758%2Fs13428-018-01196-9
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N091b1815969040b38c2eb78824a87c48 schema:name pubmed_id
    63 schema:value 30903562
    64 rdf:type schema:PropertyValue
    65 N3dff0698733f4083ba07337f7e04df87 schema:name doi
    66 schema:value 10.3758/s13428-018-01196-9
    67 rdf:type schema:PropertyValue
    68 N5f30d4c1fdc943d4be961d125c0149d9 schema:name readcube_id
    69 schema:value 6b7fdb6824e035735e36db947325a37e76ea4f80d64a2b2e2891c4022c03e279
    70 rdf:type schema:PropertyValue
    71 N683583ea1cf6494da3ea862932cca99e rdf:first N722607cd93474cecae533e13c2dbc13b
    72 rdf:rest rdf:nil
    73 N6d0f8b21e41846379ca85b9f775c23c6 schema:name nlm_unique_id
    74 schema:value 101244316
    75 rdf:type schema:PropertyValue
    76 N722607cd93474cecae533e13c2dbc13b schema:affiliation https://www.grid.ac/institutes/grid.12295.3d
    77 schema:familyName Olsson-Collentine
    78 schema:givenName A.
    79 rdf:type schema:Person
    80 N97cd7cbe3e5148629aa49a56c4cda205 schema:name Springer Nature - SN SciGraph project
    81 rdf:type schema:Organization
    82 N9e6f799559a04bd6889c11aa9e262b4f rdf:first Nf292582383f8444985804fe609a077da
    83 rdf:rest N683583ea1cf6494da3ea862932cca99e
    84 Ne9bf2a20104e4005a7e92ecaa3a26e82 schema:name dimensions_id
    85 schema:value pub.1112945002
    86 rdf:type schema:PropertyValue
    87 Nf292582383f8444985804fe609a077da schema:affiliation https://www.grid.ac/institutes/grid.12295.3d
    88 schema:familyName Mulder
    89 schema:givenName J.
    90 rdf:type schema:Person
    91 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Psychology and Cognitive Sciences
    93 rdf:type schema:DefinedTerm
    94 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    95 schema:name Psychology
    96 rdf:type schema:DefinedTerm
    97 sg:grant.6947074 http://pending.schema.org/fundedItem sg:pub.10.3758/s13428-018-01196-9
    98 rdf:type schema:MonetaryGrant
    99 sg:journal.1319746 schema:issn 1532-5970
    100 1554-351X
    101 schema:name Behavior Research Methods
    102 rdf:type schema:Periodical
    103 sg:pub.10.1007/bf02564428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029553710
    104 https://doi.org/10.1007/bf02564428
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.1007/s11336-018-9615-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1103782399
    107 https://doi.org/10.1007/s11336-018-9615-z
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.3758/bf03194105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028229859
    110 https://doi.org/10.3758/bf03194105
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.3758/pbr.16.2.225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031194758
    113 https://doi.org/10.3758/pbr.16.2.225
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.3758/s13423-012-0295-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017375361
    116 https://doi.org/10.3758/s13423-012-0295-x
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.csda.2013.07.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022152583
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.jmp.2009.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010007733
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.jmp.2012.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002395255
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.jmp.2014.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039179947
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.jmp.2016.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010366052
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.jspi.2009.09.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042366272
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1037/1082-989x.10.4.477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019383010
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1037/a0020137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018979438
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1037/a0022790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003568803
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1037/met0000017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026134567
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1037/met0000116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085938396
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1080/00224545.2017.1341374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086037650
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1080/00273171.2012.734737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029020109
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1080/01621459.1995.10476572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304855
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1080/01621459.1996.10476668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058304951
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1080/17405629.2011.621799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025876504
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1093/biomet/89.3.491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059421188
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1093/esr/18.1.17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059572546
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1111/bmsp.12013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051258798
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1111/bmsp.12110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091410366
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1111/j.2517-6161.1995.tb02017.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458915
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1177/0149206314525206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035506348
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1192/bjp.bp.111.098970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047524923
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1201/b11158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108240709
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1214/009053604000000238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013282294
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1214/06-ba115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064389467
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1214/18-ba1115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106083100
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1214/aoms/1177693507 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064398619
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.18637/jss.v046.i02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068672685
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.3389/fpsyg.2012.00002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013081088
    177 rdf:type schema:CreativeWork
    178 https://www.grid.ac/institutes/grid.12295.3d schema:alternateName Tilburg University
    179 schema:name Department of Methodology and Statistics, Tilburg University, Warrandelaan 1, Tilburg, The Netherlands
    180 Jheronimus Academy of Data Science, Sint Janssingel 92, 5211 DA, ’s-Hertogenbosch, The Netherlands
    181 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...