Alternatives to polysomnography (PSG): A validation of wrist actigraphy and a partial-PSG system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-12

AUTHORS

Anastasi Kosmadopoulos, Charli Sargent, David Darwent, Xuan Zhou, Gregory D. Roach

ABSTRACT

The objective of this study was to assess the validity of a sleep/wake activity monitor, an energy expenditure activity monitor, and a partial-polysomnography system at measuring sleep and wake under identical conditions. Secondary aims were to evaluate the sleep/wake thresholds for each activity monitor and to compare the three devices. To achieve these aims, two nights of sleep were recorded simultaneously with polysomnography (PSG), two activity monitors, and a partial-PSG system in a sleep laboratory. Agreement with PSG was evaluated epoch by epoch and with summary measures including total sleep time (TST) and wake after sleep onset (WASO). All of the devices had high agreement rates for identifying sleep and wake, but the partial-PSG system was the best, with an agreement of 91.6% ± 5.1%. At their best thresholds, the sleep/wake monitor (medium threshold, 87.7% ± 7.6%) and the energy expenditure monitor (very low threshold, 86.8% ± 8.6%) had similarly high rates of agreement. The summary measures were similar to those determined by PSG, but the partial-PSG system provided the most consistent estimates. Although the partial-PSG system was the most accurate device, both activity monitors were also valid for sleep estimation, provided that appropriate thresholds were selected. Each device has advantages, so the primary consideration for researchers will be to determine which best suits a given research design. More... »

PAGES

1032-1041

Identifiers

URI

http://scigraph.springernature.com/pub.10.3758/s13428-013-0438-7

DOI

http://dx.doi.org/10.3758/s13428-013-0438-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051489856

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/24442593


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Actigraphy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Activity Cycles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Polysomnography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reference Values", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Research Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sleep", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Wireless Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Wrist", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Central Queensland University", 
          "id": "https://www.grid.ac/institutes/grid.1023.0", 
          "name": [
            "Appleton Institute, Central Queensland University, P.O. Box 42, 5034, Goodwood, South Australia, Australia", 
            "Bushfire Co-operative Research Centre, East Melbourne, Victoria, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosmadopoulos", 
        "givenName": "Anastasi", 
        "id": "sg:person.01052657377.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052657377.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Queensland University", 
          "id": "https://www.grid.ac/institutes/grid.1023.0", 
          "name": [
            "Appleton Institute, Central Queensland University, P.O. Box 42, 5034, Goodwood, South Australia, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sargent", 
        "givenName": "Charli", 
        "id": "sg:person.01177144134.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177144134.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Queensland University", 
          "id": "https://www.grid.ac/institutes/grid.1023.0", 
          "name": [
            "Appleton Institute, Central Queensland University, P.O. Box 42, 5034, Goodwood, South Australia, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Darwent", 
        "givenName": "David", 
        "id": "sg:person.01076772410.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076772410.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Queensland University", 
          "id": "https://www.grid.ac/institutes/grid.1023.0", 
          "name": [
            "Appleton Institute, Central Queensland University, P.O. Box 42, 5034, Goodwood, South Australia, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Xuan", 
        "id": "sg:person.01350370215.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350370215.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Central Queensland University", 
          "id": "https://www.grid.ac/institutes/grid.1023.0", 
          "name": [
            "Appleton Institute, Central Queensland University, P.O. Box 42, 5034, Goodwood, South Australia, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roach", 
        "givenName": "Gregory D.", 
        "id": "sg:person.016250351037.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250351037.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s1389-9457(00)00098-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002522678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/07420528.2012.675222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003549486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0165-0270(00)00364-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003678904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2486/indhealth.mssw-01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004268157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.aap.2011.09.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004283631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.2011.00944.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005628079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apergo.2011.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008203321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11325-012-0757-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011287083", 
          "https://doi.org/10.1007/s11325-012-0757-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/09291016.2011.614794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015346405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.2010.00858.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027989046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.2009.00814.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031728016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1207/s15402010bsm0203_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031926549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2869.2007.00588.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036284594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/17461391.2012.696711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040155476"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040287180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(86)90837-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040287180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sleep.2012.01.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043266371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/02701367.2006.10599333", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046954387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1099800411422249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049958185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1099800411422249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049958185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/s13428-011-0098-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050016674", 
          "https://doi.org/10.3758/s13428-011-0098-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2529310", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069974986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5665/sleep.2648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073065720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/22.3.378", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074463880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/26.1.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1075249646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/15.5.461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1076579524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/ptj/85.3.257", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077013196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1077147545", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/28.12.1568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077174072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/30.10.1362", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1077508761"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078204261", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/34.5.661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078390349"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/9.4.519", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079964089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/sleep/17.3.201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082574087"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12", 
    "datePublishedReg": "2014-12-01", 
    "description": "The objective of this study was to assess the validity of a sleep/wake activity monitor, an energy expenditure activity monitor, and a partial-polysomnography system at measuring sleep and wake under identical conditions. Secondary aims were to evaluate the sleep/wake thresholds for each activity monitor and to compare the three devices. To achieve these aims, two nights of sleep were recorded simultaneously with polysomnography (PSG), two activity monitors, and a partial-PSG system in a sleep laboratory. Agreement with PSG was evaluated epoch by epoch and with summary measures including total sleep time (TST) and wake after sleep onset (WASO). All of the devices had high agreement rates for identifying sleep and wake, but the partial-PSG system was the best, with an agreement of 91.6% \u00b1 5.1%. At their best thresholds, the sleep/wake monitor (medium threshold, 87.7% \u00b1 7.6%) and the energy expenditure monitor (very low threshold, 86.8% \u00b1 8.6%) had similarly high rates of agreement. The summary measures were similar to those determined by PSG, but the partial-PSG system provided the most consistent estimates. Although the partial-PSG system was the most accurate device, both activity monitors were also valid for sleep estimation, provided that appropriate thresholds were selected. Each device has advantages, so the primary consideration for researchers will be to determine which best suits a given research design.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3758/s13428-013-0438-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1319746", 
        "issn": [
          "1554-351X", 
          "1532-5970"
        ], 
        "name": "Behavior Research Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Alternatives to polysomnography (PSG): A validation of wrist actigraphy and a partial-PSG system", 
    "pagination": "1032-1041", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f546983799de18f3db4b81d868a3b8d7b4a2d7a6d21a808c0262bd6ec7a3b8ad"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "24442593"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "101244316"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3758/s13428-013-0438-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051489856"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3758/s13428-013-0438-7", 
      "https://app.dimensions.ai/details/publication/pub.1051489856"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3758%2Fs13428-013-0438-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/s13428-013-0438-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/s13428-013-0438-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/s13428-013-0438-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/s13428-013-0438-7'


 

This table displays all metadata directly associated to this object as RDF triples.

250 TRIPLES      21 PREDICATES      75 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3758/s13428-013-0438-7 schema:about N13059122494d40e0862db4ab8253cb6c
2 N38029ce4992a4ed0a0a38bbf5eb435ac
3 N43ad1b004f0b4b08ab051dfd8dfad827
4 N4b20abfd8bce475ea42cd2529d91a20d
5 N67e10bce38f54e7ebc7c84d3a5e251f1
6 N842fe2d0afea40ef94108e9a72a62afd
7 Na3f0c83edc7c40c5990e0fb32dc2fa90
8 Na67dce3fd72e484b99c5107db954a7b1
9 Nabce6a9b18f54dce82835cc6e4f93f6e
10 Nac99cf9629b8415ca3416acdb04b7d81
11 Nb63cd83db8c5491daa8e6bc2fd57a7a0
12 Nd822d4ba634d4ffbb77fb16bc0ddc46b
13 Nf57d8656da624b4d8c08a4c7155a9be0
14 Nfc2fb48a1fa84a15b44681b6db569840
15 anzsrc-for:17
16 anzsrc-for:1701
17 schema:author N0c70cd5d48e04876bfd273d4dfa1329a
18 schema:citation sg:pub.10.1007/s11325-012-0757-4
19 sg:pub.10.3758/s13428-011-0098-4
20 https://app.dimensions.ai/details/publication/pub.1077147545
21 https://app.dimensions.ai/details/publication/pub.1078204261
22 https://doi.org/10.1016/j.aap.2011.09.020
23 https://doi.org/10.1016/j.apergo.2011.06.019
24 https://doi.org/10.1016/j.sleep.2012.01.018
25 https://doi.org/10.1016/s0140-6736(86)90837-8
26 https://doi.org/10.1016/s0165-0270(00)00364-2
27 https://doi.org/10.1016/s1389-9457(00)00098-8
28 https://doi.org/10.1080/02701367.2006.10599333
29 https://doi.org/10.1080/09291016.2011.614794
30 https://doi.org/10.1080/17461391.2012.696711
31 https://doi.org/10.1093/ptj/85.3.257
32 https://doi.org/10.1093/sleep/15.5.461
33 https://doi.org/10.1093/sleep/17.3.201
34 https://doi.org/10.1093/sleep/22.3.378
35 https://doi.org/10.1093/sleep/26.1.81
36 https://doi.org/10.1093/sleep/28.12.1568
37 https://doi.org/10.1093/sleep/30.10.1362
38 https://doi.org/10.1093/sleep/34.5.661
39 https://doi.org/10.1093/sleep/9.4.519
40 https://doi.org/10.1111/j.1365-2869.2007.00588.x
41 https://doi.org/10.1111/j.1365-2869.2009.00814.x
42 https://doi.org/10.1111/j.1365-2869.2010.00858.x
43 https://doi.org/10.1111/j.1365-2869.2011.00944.x
44 https://doi.org/10.1177/1099800411422249
45 https://doi.org/10.1207/s15402010bsm0203_2
46 https://doi.org/10.2307/2529310
47 https://doi.org/10.2486/indhealth.mssw-01
48 https://doi.org/10.3109/07420528.2012.675222
49 https://doi.org/10.5665/sleep.2648
50 schema:datePublished 2014-12
51 schema:datePublishedReg 2014-12-01
52 schema:description The objective of this study was to assess the validity of a sleep/wake activity monitor, an energy expenditure activity monitor, and a partial-polysomnography system at measuring sleep and wake under identical conditions. Secondary aims were to evaluate the sleep/wake thresholds for each activity monitor and to compare the three devices. To achieve these aims, two nights of sleep were recorded simultaneously with polysomnography (PSG), two activity monitors, and a partial-PSG system in a sleep laboratory. Agreement with PSG was evaluated epoch by epoch and with summary measures including total sleep time (TST) and wake after sleep onset (WASO). All of the devices had high agreement rates for identifying sleep and wake, but the partial-PSG system was the best, with an agreement of 91.6% ± 5.1%. At their best thresholds, the sleep/wake monitor (medium threshold, 87.7% ± 7.6%) and the energy expenditure monitor (very low threshold, 86.8% ± 8.6%) had similarly high rates of agreement. The summary measures were similar to those determined by PSG, but the partial-PSG system provided the most consistent estimates. Although the partial-PSG system was the most accurate device, both activity monitors were also valid for sleep estimation, provided that appropriate thresholds were selected. Each device has advantages, so the primary consideration for researchers will be to determine which best suits a given research design.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree false
56 schema:isPartOf N5f71551b97054a6ba13b18b717f29cf7
57 N87fb4016822d4244a70fd589a1612253
58 sg:journal.1319746
59 schema:name Alternatives to polysomnography (PSG): A validation of wrist actigraphy and a partial-PSG system
60 schema:pagination 1032-1041
61 schema:productId N28faeab7c0d74b2ea061ea16b49d26a4
62 N359870fd59a64b78b29589d959c6695e
63 N3b05abc2ebda4972a2f44a78aa1c6b7b
64 N3f32075b91534a5396e08b087cb0d636
65 N4c13e437c83242759cc82250ec8dadc6
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051489856
67 https://doi.org/10.3758/s13428-013-0438-7
68 schema:sdDatePublished 2019-04-10T14:08
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N0d0afdffe1a5474a9ac43061a5f5d7b9
71 schema:url http://link.springer.com/10.3758%2Fs13428-013-0438-7
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N0c70cd5d48e04876bfd273d4dfa1329a rdf:first sg:person.01052657377.52
76 rdf:rest N6e6636a5d78b47b19fac202cc3ea0383
77 N0d0afdffe1a5474a9ac43061a5f5d7b9 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N13059122494d40e0862db4ab8253cb6c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Activity Cycles
81 rdf:type schema:DefinedTerm
82 N28faeab7c0d74b2ea061ea16b49d26a4 schema:name pubmed_id
83 schema:value 24442593
84 rdf:type schema:PropertyValue
85 N359870fd59a64b78b29589d959c6695e schema:name readcube_id
86 schema:value f546983799de18f3db4b81d868a3b8d7b4a2d7a6d21a808c0262bd6ec7a3b8ad
87 rdf:type schema:PropertyValue
88 N38029ce4992a4ed0a0a38bbf5eb435ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Actigraphy
90 rdf:type schema:DefinedTerm
91 N3b05abc2ebda4972a2f44a78aa1c6b7b schema:name dimensions_id
92 schema:value pub.1051489856
93 rdf:type schema:PropertyValue
94 N3f32075b91534a5396e08b087cb0d636 schema:name nlm_unique_id
95 schema:value 101244316
96 rdf:type schema:PropertyValue
97 N43ad1b004f0b4b08ab051dfd8dfad827 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Adult
99 rdf:type schema:DefinedTerm
100 N4b20abfd8bce475ea42cd2529d91a20d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Young Adult
102 rdf:type schema:DefinedTerm
103 N4c13e437c83242759cc82250ec8dadc6 schema:name doi
104 schema:value 10.3758/s13428-013-0438-7
105 rdf:type schema:PropertyValue
106 N5f71551b97054a6ba13b18b717f29cf7 schema:issueNumber 4
107 rdf:type schema:PublicationIssue
108 N67e10bce38f54e7ebc7c84d3a5e251f1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
109 schema:name Energy Metabolism
110 rdf:type schema:DefinedTerm
111 N6e6636a5d78b47b19fac202cc3ea0383 rdf:first sg:person.01177144134.26
112 rdf:rest N805061fde49e41ff87744466b8c0e8d9
113 N805061fde49e41ff87744466b8c0e8d9 rdf:first sg:person.01076772410.85
114 rdf:rest Ne93ebc602a3d44438503852d1f14f68c
115 N842fe2d0afea40ef94108e9a72a62afd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Male
117 rdf:type schema:DefinedTerm
118 N87fb4016822d4244a70fd589a1612253 schema:volumeNumber 46
119 rdf:type schema:PublicationVolume
120 Na3f0c83edc7c40c5990e0fb32dc2fa90 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Humans
122 rdf:type schema:DefinedTerm
123 Na67dce3fd72e484b99c5107db954a7b1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Wireless Technology
125 rdf:type schema:DefinedTerm
126 Nabce6a9b18f54dce82835cc6e4f93f6e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
127 schema:name Reference Values
128 rdf:type schema:DefinedTerm
129 Nac99cf9629b8415ca3416acdb04b7d81 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Research Design
131 rdf:type schema:DefinedTerm
132 Nb63cd83db8c5491daa8e6bc2fd57a7a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Female
134 rdf:type schema:DefinedTerm
135 Nd822d4ba634d4ffbb77fb16bc0ddc46b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Sleep
137 rdf:type schema:DefinedTerm
138 Ne93ebc602a3d44438503852d1f14f68c rdf:first sg:person.01350370215.46
139 rdf:rest Necbd4b5081d34ba3b0bb7a0123721051
140 Necbd4b5081d34ba3b0bb7a0123721051 rdf:first sg:person.016250351037.48
141 rdf:rest rdf:nil
142 Nf57d8656da624b4d8c08a4c7155a9be0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Polysomnography
144 rdf:type schema:DefinedTerm
145 Nfc2fb48a1fa84a15b44681b6db569840 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Wrist
147 rdf:type schema:DefinedTerm
148 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
149 schema:name Psychology and Cognitive Sciences
150 rdf:type schema:DefinedTerm
151 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
152 schema:name Psychology
153 rdf:type schema:DefinedTerm
154 sg:journal.1319746 schema:issn 1532-5970
155 1554-351X
156 schema:name Behavior Research Methods
157 rdf:type schema:Periodical
158 sg:person.01052657377.52 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
159 schema:familyName Kosmadopoulos
160 schema:givenName Anastasi
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052657377.52
162 rdf:type schema:Person
163 sg:person.01076772410.85 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
164 schema:familyName Darwent
165 schema:givenName David
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076772410.85
167 rdf:type schema:Person
168 sg:person.01177144134.26 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
169 schema:familyName Sargent
170 schema:givenName Charli
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177144134.26
172 rdf:type schema:Person
173 sg:person.01350370215.46 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
174 schema:familyName Zhou
175 schema:givenName Xuan
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350370215.46
177 rdf:type schema:Person
178 sg:person.016250351037.48 schema:affiliation https://www.grid.ac/institutes/grid.1023.0
179 schema:familyName Roach
180 schema:givenName Gregory D.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016250351037.48
182 rdf:type schema:Person
183 sg:pub.10.1007/s11325-012-0757-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011287083
184 https://doi.org/10.1007/s11325-012-0757-4
185 rdf:type schema:CreativeWork
186 sg:pub.10.3758/s13428-011-0098-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050016674
187 https://doi.org/10.3758/s13428-011-0098-4
188 rdf:type schema:CreativeWork
189 https://app.dimensions.ai/details/publication/pub.1077147545 schema:CreativeWork
190 https://app.dimensions.ai/details/publication/pub.1078204261 schema:CreativeWork
191 https://doi.org/10.1016/j.aap.2011.09.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004283631
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.apergo.2011.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008203321
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.sleep.2012.01.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043266371
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/s0140-6736(86)90837-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040287180
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/s0165-0270(00)00364-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003678904
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/s1389-9457(00)00098-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002522678
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1080/02701367.2006.10599333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046954387
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1080/09291016.2011.614794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015346405
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1080/17461391.2012.696711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040155476
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1093/ptj/85.3.257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077013196
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1093/sleep/15.5.461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076579524
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1093/sleep/17.3.201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082574087
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1093/sleep/22.3.378 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074463880
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/sleep/26.1.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1075249646
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/sleep/28.12.1568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077174072
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/sleep/30.10.1362 schema:sameAs https://app.dimensions.ai/details/publication/pub.1077508761
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/sleep/34.5.661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078390349
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/sleep/9.4.519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079964089
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1111/j.1365-2869.2007.00588.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036284594
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1111/j.1365-2869.2009.00814.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031728016
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1111/j.1365-2869.2010.00858.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1027989046
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1111/j.1365-2869.2011.00944.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005628079
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1177/1099800411422249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049958185
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1207/s15402010bsm0203_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031926549
238 rdf:type schema:CreativeWork
239 https://doi.org/10.2307/2529310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069974986
240 rdf:type schema:CreativeWork
241 https://doi.org/10.2486/indhealth.mssw-01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004268157
242 rdf:type schema:CreativeWork
243 https://doi.org/10.3109/07420528.2012.675222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003549486
244 rdf:type schema:CreativeWork
245 https://doi.org/10.5665/sleep.2648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073065720
246 rdf:type schema:CreativeWork
247 https://www.grid.ac/institutes/grid.1023.0 schema:alternateName Central Queensland University
248 schema:name Appleton Institute, Central Queensland University, P.O. Box 42, 5034, Goodwood, South Australia, Australia
249 Bushfire Co-operative Research Centre, East Melbourne, Victoria, Australia
250 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...