Ontology type: schema:ScholarlyArticle Open Access: True
2012-04
AUTHORSMidori Tokita, Akira Ishiguchi
ABSTRACTA genuinely abstract number representation is thought to be capable of representing the numerosity of any set of discrete elements, whether they are sequentially or simultaneously presented. Recent neuroimaging studies, however, have demonstrated that different areas of intraparietal sulcus play a role in extracting numerosity across simultaneous or sequential presentation during a quantification process, suggesting the existence of a format-dependent numerical system. To test whether behavioral evidence exists for format-dependent numerical processing in adult humans, we measured the Weber fractions of numerosity discrimination for sequential stimuli, simultaneous stimuli, and cross-format stimuli with a carefully controlled experimental procedure. The results showed distinct differences between the performance in the simultaneous and sequential conditions, supporting the existence of format-dependent processes for numerosity representation. Moreover, the performance on cross-format trials differed among participants, with the exception that performance was always worse than in the simultaneous condition. Taken together, our findings suggest that numerical representation may involve a complex set of multiple stages. More... »
PAGES285-293
http://scigraph.springernature.com/pub.10.3758/s13423-011-0206-6
DOIhttp://dx.doi.org/10.3758/s13423-011-0206-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1007464182
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/22231727
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Psychology and Cognitive Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Discrimination (Psychology)",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Humans",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Mathematics",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Pattern Recognition, Visual",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Photic Stimulation",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ochanomizu University",
"id": "https://www.grid.ac/institutes/grid.412314.1",
"name": [
"Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, 112-8610, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Tokita",
"givenName": "Midori",
"id": "sg:person.01131244633.54",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131244633.54"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ochanomizu University",
"id": "https://www.grid.ac/institutes/grid.412314.1",
"name": [
"Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, 112-8610, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Ishiguchi",
"givenName": "Akira",
"id": "sg:person.011400407201.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011400407201.42"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.3758/bf03196206",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000203552",
"https://doi.org/10.3758/bf03196206"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.3758/s13423-011-0072-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000445542",
"https://doi.org/10.3758/s13423-011-0072-2"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1162/jocn.2007.19.11.1845",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005756057"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0166-2236(98)01263-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008357914"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1162/jocn.1993.5.4.390",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011327061"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neuron.2004.10.014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011610564"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0140525x09990938",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017167168"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0140525x09990938",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017167168"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.tics.2010.09.008",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017626612"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.brainres.2006.05.104",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018575821"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1162/0898929042568497",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021516787"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cub.2005.04.056",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022175008"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0010-0277(02)00178-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022330053"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0010-0277(02)00178-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022330053"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0010-0277(92)90050-r",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024259447"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1467-9280.2006.01719.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024567238"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1467-9280.2006.01719.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024567238"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1037/0096-1523.21.1.149",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025314311"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.tics.2004.05.002",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026002843"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature07246",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026979610",
"https://doi.org/10.1038/nature07246"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.0508107103",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028978114"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1523/jneurosci.1056-07.2007",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029630326"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1146/annurev.neuro.051508.135550",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1033969156"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1162/0898929042568442",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035074227"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/1467-9280.00120",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037068967"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/1467-9280.00120",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037068967"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.3758/app.72.7.1839",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037107620",
"https://doi.org/10.3758/app.72.7.1839"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.pneurobio.2007.11.001",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038634948"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1037/0033-295x.101.1.80",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043884041"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.cognition.2007.10.009",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044317800"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1037/0097-7403.9.3.320",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044658027"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1467-7687.2005.00429.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046591974"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1111/j.1467-7687.2005.00429.x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046591974"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1098/rspb.2003.2414",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1047136967"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pbio.0040125",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048426279"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1371/journal.pbio.0040125",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048426279"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0042-6989(83)90204-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048573517"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/0042-6989(83)90204-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048573517"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s1364-6613(99)01383-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050320637"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/j.neuroimage.2010.04.254",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051590006"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.1130308",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062454550"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-04",
"datePublishedReg": "2012-04-01",
"description": "A genuinely abstract number representation is thought to be capable of representing the numerosity of any set of discrete elements, whether they are sequentially or simultaneously presented. Recent neuroimaging studies, however, have demonstrated that different areas of intraparietal sulcus play a role in extracting numerosity across simultaneous or sequential presentation during a quantification process, suggesting the existence of a format-dependent numerical system. To test whether behavioral evidence exists for format-dependent numerical processing in adult humans, we measured the Weber fractions of numerosity discrimination for sequential stimuli, simultaneous stimuli, and cross-format stimuli with a carefully controlled experimental procedure. The results showed distinct differences between the performance in the simultaneous and sequential conditions, supporting the existence of format-dependent processes for numerosity representation. Moreover, the performance on cross-format trials differed among participants, with the exception that performance was always worse than in the simultaneous condition. Taken together, our findings suggest that numerical representation may involve a complex set of multiple stages.",
"genre": "research_article",
"id": "sg:pub.10.3758/s13423-011-0206-6",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.6042730",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1082645",
"issn": [
"1069-9384",
"1531-5320"
],
"name": "Bulletin of the Psychonomic Society",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "19"
}
],
"name": "Behavioral evidence for format-dependent processes in approximate numerosity representation",
"pagination": "285-293",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"238da23d187020231c66c83ad15b37ebce998d8ae823ecbcf9189540bfbc7a72"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"22231727"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"9502924"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.3758/s13423-011-0206-6"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1007464182"
]
}
],
"sameAs": [
"https://doi.org/10.3758/s13423-011-0206-6",
"https://app.dimensions.ai/details/publication/pub.1007464182"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T09:33",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99812_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.3758%2Fs13423-011-0206-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/s13423-011-0206-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/s13423-011-0206-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/s13423-011-0206-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/s13423-011-0206-6'
This table displays all metadata directly associated to this object as RDF triples.
204 TRIPLES
21 PREDICATES
68 URIs
26 LITERALS
14 BLANK NODES