The gaze selects informative details within pictures View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1967-11

AUTHORS

Norman H. Mackworth, Anthony J. Morandi

ABSTRACT

The visual fixations of 20 Ss viewing each of two pictures were measured. Each picture was later divided into 64 squares, and 20 other Ss judged their recognizability on a 10-point scale. Both measures gave high readings for unusual details and for unpredictable contours. Although they were judged to be highly recognizable, all the redundant (or predictable) contours received few fixations. Areas of mere texture scored low on both measures. The relations between fixation densities and estimated recognizability suggest that a scene may be divided into informative features and redundant regions. Not only do the eyes have to be aimed, they are usually aimed intelligently, even during the casual inspection of pictures. More... »

PAGES

547-552

References to SciGraph publications

  • 1967-03. A stand camera for line-of-sight recording in ATTENTION, PERCEPTION, & PSYCHOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3758/bf03210264

    DOI

    http://dx.doi.org/10.3758/bf03210264

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032149575


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Harvard University, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mackworth", 
            "givenName": "Norman H.", 
            "id": "sg:person.01231662041.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231662041.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Harvard University", 
              "id": "https://www.grid.ac/institutes/grid.38142.3c", 
              "name": [
                "Harvard University, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Morandi", 
            "givenName": "Anthony J.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1146/annurev.ps.14.020163.000333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019304246"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-4694(66)90139-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020503047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0013-4694(66)90139-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020503047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/bf03210305", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025527970", 
              "https://doi.org/10.3758/bf03210305"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/h0045496", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029455071"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/h0048826", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032614644"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/h0043805", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034710033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/h0054663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036774545"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2753/rpo1061-040502013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039149636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/h0055517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042751921"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/h0046033", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047957952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/thfe.1966.232330", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061614737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.153.3731.25", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062488987"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2466/pms.1964.18.1.11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070784381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2466/pms.1964.18.1.11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1070784381"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1152/jn.1965.28.2.229", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1076394997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1109720871", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1037/10039-000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109720871"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1967-11", 
        "datePublishedReg": "1967-11-01", 
        "description": "The visual fixations of 20 Ss viewing each of two pictures were measured. Each picture was later divided into 64 squares, and 20 other Ss judged their recognizability on a 10-point scale. Both measures gave high readings for unusual details and for unpredictable contours. Although they were judged to be highly recognizable, all the redundant (or predictable) contours received few fixations. Areas of mere texture scored low on both measures. The relations between fixation densities and estimated recognizability suggest that a scene may be divided into informative features and redundant regions. Not only do the eyes have to be aimed, they are usually aimed intelligently, even during the casual inspection of pictures.", 
        "genre": "research_article", 
        "id": "sg:pub.10.3758/bf03210264", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1041037", 
            "issn": [
              "1943-3921", 
              "1943-393X"
            ], 
            "name": "Attention, Perception, & Psychophysics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "2"
          }
        ], 
        "name": "The gaze selects informative details within pictures", 
        "pagination": "547-552", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9927864ab10136bdda922926bdee515b74ce4bbfdc83e06789c7506edfaaff70"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3758/bf03210264"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032149575"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3758/bf03210264", 
          "https://app.dimensions.ai/details/publication/pub.1032149575"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:45", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000589.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.3758/BF03210264"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/bf03210264'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/bf03210264'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/bf03210264'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/bf03210264'


     

    This table displays all metadata directly associated to this object as RDF triples.

    115 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3758/bf03210264 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N29100601adf04bc995875a3cc1595e62
    4 schema:citation sg:pub.10.3758/bf03210305
    5 https://app.dimensions.ai/details/publication/pub.1109720871
    6 https://doi.org/10.1016/0013-4694(66)90139-8
    7 https://doi.org/10.1037/10039-000
    8 https://doi.org/10.1037/h0043805
    9 https://doi.org/10.1037/h0045496
    10 https://doi.org/10.1037/h0046033
    11 https://doi.org/10.1037/h0048826
    12 https://doi.org/10.1037/h0054663
    13 https://doi.org/10.1037/h0055517
    14 https://doi.org/10.1109/thfe.1966.232330
    15 https://doi.org/10.1126/science.153.3731.25
    16 https://doi.org/10.1146/annurev.ps.14.020163.000333
    17 https://doi.org/10.1152/jn.1965.28.2.229
    18 https://doi.org/10.2466/pms.1964.18.1.11
    19 https://doi.org/10.2753/rpo1061-040502013
    20 schema:datePublished 1967-11
    21 schema:datePublishedReg 1967-11-01
    22 schema:description The visual fixations of 20 Ss viewing each of two pictures were measured. Each picture was later divided into 64 squares, and 20 other Ss judged their recognizability on a 10-point scale. Both measures gave high readings for unusual details and for unpredictable contours. Although they were judged to be highly recognizable, all the redundant (or predictable) contours received few fixations. Areas of mere texture scored low on both measures. The relations between fixation densities and estimated recognizability suggest that a scene may be divided into informative features and redundant regions. Not only do the eyes have to be aimed, they are usually aimed intelligently, even during the casual inspection of pictures.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N5971f6ad638c41a0ac62d5b36f2e855b
    27 N623723355e1d49559f5e2d90d7420cb6
    28 sg:journal.1041037
    29 schema:name The gaze selects informative details within pictures
    30 schema:pagination 547-552
    31 schema:productId N039230c039ce430abacff76714c9fd07
    32 N0cf812a403a34245bbf9d64526d9311e
    33 Ndcc19972ff374294ba5870f8f7685d8f
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032149575
    35 https://doi.org/10.3758/bf03210264
    36 schema:sdDatePublished 2019-04-10T22:45
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher Nbbbca5371e0143368abe287306bcb233
    39 schema:url http://link.springer.com/10.3758/BF03210264
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N039230c039ce430abacff76714c9fd07 schema:name dimensions_id
    44 schema:value pub.1032149575
    45 rdf:type schema:PropertyValue
    46 N0cf812a403a34245bbf9d64526d9311e schema:name readcube_id
    47 schema:value 9927864ab10136bdda922926bdee515b74ce4bbfdc83e06789c7506edfaaff70
    48 rdf:type schema:PropertyValue
    49 N29100601adf04bc995875a3cc1595e62 rdf:first sg:person.01231662041.65
    50 rdf:rest Na6f0db1d22df4de796a41e02fb0e6604
    51 N5971f6ad638c41a0ac62d5b36f2e855b schema:issueNumber 11
    52 rdf:type schema:PublicationIssue
    53 N623723355e1d49559f5e2d90d7420cb6 schema:volumeNumber 2
    54 rdf:type schema:PublicationVolume
    55 N67accdbd6eba4de4a6817f7d76e94852 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    56 schema:familyName Morandi
    57 schema:givenName Anthony J.
    58 rdf:type schema:Person
    59 Na6f0db1d22df4de796a41e02fb0e6604 rdf:first N67accdbd6eba4de4a6817f7d76e94852
    60 rdf:rest rdf:nil
    61 Nbbbca5371e0143368abe287306bcb233 schema:name Springer Nature - SN SciGraph project
    62 rdf:type schema:Organization
    63 Ndcc19972ff374294ba5870f8f7685d8f schema:name doi
    64 schema:value 10.3758/bf03210264
    65 rdf:type schema:PropertyValue
    66 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Information and Computing Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Artificial Intelligence and Image Processing
    71 rdf:type schema:DefinedTerm
    72 sg:journal.1041037 schema:issn 1943-3921
    73 1943-393X
    74 schema:name Attention, Perception, & Psychophysics
    75 rdf:type schema:Periodical
    76 sg:person.01231662041.65 schema:affiliation https://www.grid.ac/institutes/grid.38142.3c
    77 schema:familyName Mackworth
    78 schema:givenName Norman H.
    79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01231662041.65
    80 rdf:type schema:Person
    81 sg:pub.10.3758/bf03210305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025527970
    82 https://doi.org/10.3758/bf03210305
    83 rdf:type schema:CreativeWork
    84 https://app.dimensions.ai/details/publication/pub.1109720871 schema:CreativeWork
    85 https://doi.org/10.1016/0013-4694(66)90139-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020503047
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1037/10039-000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109720871
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1037/h0043805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034710033
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1037/h0045496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029455071
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1037/h0046033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047957952
    94 rdf:type schema:CreativeWork
    95 https://doi.org/10.1037/h0048826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032614644
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1037/h0054663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036774545
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1037/h0055517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042751921
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1109/thfe.1966.232330 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614737
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1126/science.153.3731.25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062488987
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1146/annurev.ps.14.020163.000333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019304246
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1152/jn.1965.28.2.229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1076394997
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.2466/pms.1964.18.1.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070784381
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.2753/rpo1061-040502013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039149636
    112 rdf:type schema:CreativeWork
    113 https://www.grid.ac/institutes/grid.38142.3c schema:alternateName Harvard University
    114 schema:name Harvard University, USA
    115 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...