Efficient estimation of sensory thresholds View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1986-11

AUTHORS

Lewis O. Harvey

ABSTRACT

Laboratory computers permit detection and discrimination thresholds to be measured rapidly, efficiently, and accurately. In this paper, the general natures of psychometric functions and of thresholds are reviewed, and various methods for estimating sensory thresholds are summarized. The most efficient method, in principle, using maximum-likelihood threshold estimations, is examined in detail. Four techniques are discussed that minimize the reported problems found with the maximum-likelihood method. A package of FORTRAN subroutines, ML-TEST, which implements the maximum-likelihood method, is described. These subroutines are available on request from the author. More... »

PAGES

623-632

References to SciGraph publications

  • 1974-06. A vector-magnitude model of contrast detection in KYBERNETIK
  • 1980-07. Maximum likelihood estimation: The best PEST in ATTENTION, PERCEPTION, & PSYCHOPHYSICS
  • 1983-03. Quest: A Bayesian adaptive psychometric method in ATTENTION, PERCEPTION, & PSYCHOPHYSICS
  • 1978-03. Estimates on probability functions: A more virulent PEST in ATTENTION, PERCEPTION, & PSYCHOPHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3758/bf03201438

    DOI

    http://dx.doi.org/10.3758/bf03201438

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1039055301


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology and Cognitive Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Psychology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1702", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cognitive Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Psychology, University of Colorado, Campus Box 345, 80309-0345, Boulder, CO", 
              "id": "http://www.grid.ac/institutes/grid.266190.a", 
              "name": [
                "Department of Psychology, University of Colorado, Campus Box 345, 80309-0345, Boulder, CO"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Harvey", 
            "givenName": "Lewis O.", 
            "id": "sg:person.01362640111.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362640111.51"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.3758/bf03208300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071377618", 
              "https://doi.org/10.3758/bf03208300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/bf03202828", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010963441", 
              "https://doi.org/10.3758/bf03202828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00271628", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019931343", 
              "https://doi.org/10.1007/bf00271628"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3758/bf03204398", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052643058", 
              "https://doi.org/10.3758/bf03204398"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "1986-11", 
        "datePublishedReg": "1986-11-01", 
        "description": "Laboratory computers permit detection and discrimination thresholds to be measured rapidly, efficiently, and accurately. In this paper, the general natures of psychometric functions and of thresholds are reviewed, and various methods for estimating sensory thresholds are summarized. The most efficient method, in principle, using maximum-likelihood threshold estimations, is examined in detail. Four techniques are discussed that minimize the reported problems found with the maximum-likelihood method. A package of FORTRAN subroutines, ML-TEST, which implements the maximum-likelihood method, is described. These subroutines are available on request from the author.", 
        "genre": "article", 
        "id": "sg:pub.10.3758/bf03201438", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1319746", 
            "issn": [
              "1554-351X", 
              "1532-5970"
            ], 
            "name": "Behavior Research Methods", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "18"
          }
        ], 
        "keywords": [
          "efficient method", 
          "estimation", 
          "maximum-likelihood method", 
          "FORTRAN subroutines", 
          "subroutine", 
          "efficient estimation", 
          "laboratory computer", 
          "computer", 
          "detection", 
          "general nature", 
          "nature", 
          "psychometric functions", 
          "threshold", 
          "method", 
          "sensory threshold", 
          "principles", 
          "threshold estimation", 
          "detail", 
          "technique", 
          "problem", 
          "package", 
          "discrimination", 
          "function", 
          "requests", 
          "authors", 
          "paper", 
          "maximum-likelihood threshold estimations", 
          "ML-TEST"
        ], 
        "name": "Efficient estimation of sensory thresholds", 
        "pagination": "623-632", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1039055301"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3758/bf03201438"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3758/bf03201438", 
          "https://app.dimensions.ai/details/publication/pub.1039055301"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T17:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_204.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.3758/bf03201438"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/bf03201438'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/bf03201438'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/bf03201438'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/bf03201438'


     

    This table displays all metadata directly associated to this object as RDF triples.

    114 TRIPLES      22 PREDICATES      61 URIs      46 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3758/bf03201438 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:17
    4 anzsrc-for:1701
    5 anzsrc-for:1702
    6 schema:author N08de3d19097b4272a58428de21e01943
    7 schema:citation sg:pub.10.1007/bf00271628
    8 sg:pub.10.3758/bf03202828
    9 sg:pub.10.3758/bf03204398
    10 sg:pub.10.3758/bf03208300
    11 schema:datePublished 1986-11
    12 schema:datePublishedReg 1986-11-01
    13 schema:description Laboratory computers permit detection and discrimination thresholds to be measured rapidly, efficiently, and accurately. In this paper, the general natures of psychometric functions and of thresholds are reviewed, and various methods for estimating sensory thresholds are summarized. The most efficient method, in principle, using maximum-likelihood threshold estimations, is examined in detail. Four techniques are discussed that minimize the reported problems found with the maximum-likelihood method. A package of FORTRAN subroutines, ML-TEST, which implements the maximum-likelihood method, is described. These subroutines are available on request from the author.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree true
    17 schema:isPartOf Na72c4b5dc2624da9ab1869e583ce49af
    18 Na8f2ccf02eed4ec5ac5ba75fd424b7f0
    19 sg:journal.1319746
    20 schema:keywords FORTRAN subroutines
    21 ML-TEST
    22 authors
    23 computer
    24 detail
    25 detection
    26 discrimination
    27 efficient estimation
    28 efficient method
    29 estimation
    30 function
    31 general nature
    32 laboratory computer
    33 maximum-likelihood method
    34 maximum-likelihood threshold estimations
    35 method
    36 nature
    37 package
    38 paper
    39 principles
    40 problem
    41 psychometric functions
    42 requests
    43 sensory threshold
    44 subroutine
    45 technique
    46 threshold
    47 threshold estimation
    48 schema:name Efficient estimation of sensory thresholds
    49 schema:pagination 623-632
    50 schema:productId N05af040926a2416f9781602655c6bace
    51 Na076d133137442458f5e4a50f432eddf
    52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039055301
    53 https://doi.org/10.3758/bf03201438
    54 schema:sdDatePublished 2021-11-01T17:57
    55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    56 schema:sdPublisher Nfecab9c68fdf45e9ab7b080b3eeaccd3
    57 schema:url https://doi.org/10.3758/bf03201438
    58 sgo:license sg:explorer/license/
    59 sgo:sdDataset articles
    60 rdf:type schema:ScholarlyArticle
    61 N05af040926a2416f9781602655c6bace schema:name doi
    62 schema:value 10.3758/bf03201438
    63 rdf:type schema:PropertyValue
    64 N08de3d19097b4272a58428de21e01943 rdf:first sg:person.01362640111.51
    65 rdf:rest rdf:nil
    66 Na076d133137442458f5e4a50f432eddf schema:name dimensions_id
    67 schema:value pub.1039055301
    68 rdf:type schema:PropertyValue
    69 Na72c4b5dc2624da9ab1869e583ce49af schema:issueNumber 6
    70 rdf:type schema:PublicationIssue
    71 Na8f2ccf02eed4ec5ac5ba75fd424b7f0 schema:volumeNumber 18
    72 rdf:type schema:PublicationVolume
    73 Nfecab9c68fdf45e9ab7b080b3eeaccd3 schema:name Springer Nature - SN SciGraph project
    74 rdf:type schema:Organization
    75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Information and Computing Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Artificial Intelligence and Image Processing
    80 rdf:type schema:DefinedTerm
    81 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Psychology and Cognitive Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Psychology
    86 rdf:type schema:DefinedTerm
    87 anzsrc-for:1702 schema:inDefinedTermSet anzsrc-for:
    88 schema:name Cognitive Sciences
    89 rdf:type schema:DefinedTerm
    90 sg:journal.1319746 schema:issn 1532-5970
    91 1554-351X
    92 schema:name Behavior Research Methods
    93 schema:publisher Springer Nature
    94 rdf:type schema:Periodical
    95 sg:person.01362640111.51 schema:affiliation grid-institutes:grid.266190.a
    96 schema:familyName Harvey
    97 schema:givenName Lewis O.
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01362640111.51
    99 rdf:type schema:Person
    100 sg:pub.10.1007/bf00271628 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019931343
    101 https://doi.org/10.1007/bf00271628
    102 rdf:type schema:CreativeWork
    103 sg:pub.10.3758/bf03202828 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010963441
    104 https://doi.org/10.3758/bf03202828
    105 rdf:type schema:CreativeWork
    106 sg:pub.10.3758/bf03204398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052643058
    107 https://doi.org/10.3758/bf03204398
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.3758/bf03208300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071377618
    110 https://doi.org/10.3758/bf03208300
    111 rdf:type schema:CreativeWork
    112 grid-institutes:grid.266190.a schema:alternateName Department of Psychology, University of Colorado, Campus Box 345, 80309-0345, Boulder, CO
    113 schema:name Department of Psychology, University of Colorado, Campus Box 345, 80309-0345, Boulder, CO
    114 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...