The ex-Wald distribution as a descriptive model of response times View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-11

AUTHORS

Wolfgang Schwarz

ABSTRACT

We propose a new quantitative model of response times (RTs) that combines some advantages of substantive, process-oriented models and descriptive, statistically oriented accounts. The ex-Wald model assumes that RT may be represented as a convolution of an exponential and a Wald-distributed random variable. The model accounts well for the skew, shape, and hazard function of typical RT distributions. The model is based on two broad information-processing concepts: (1) a data-driven processing rate describing the speed of information accumulation, and (2) strategic response criterion setting. These concepts allow for principled expectations about how experimental factors such as stimulus saliency or response probability might influence RT on a distributional level. We present a factorial experiment involving mental digit comparisons to illustrate the application of the model, and to explain how substantive hypotheses about selective factor effects can be tested via likelihood ratio tests. More... »

PAGES

457-469

Identifiers

URI

http://scigraph.springernature.com/pub.10.3758/bf03195403

DOI

http://dx.doi.org/10.3758/bf03195403

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031776973

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11816448


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Concept Formation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Problem Solving", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Psychomotor Performance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reaction Time", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "NICI, University of Nijmegen, Postbus 9104, 6500, HE Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwarz", 
        "givenName": "Wolfgang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0165-4896(92)90044-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000201926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0021740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005395286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(92)90006-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008521185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(92)90006-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008521185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03206050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009303323", 
          "https://doi.org/10.3758/bf03206050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.83.3.190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010666363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2496(65)90014-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011381760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0160-2896(94)90021-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012975373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0191-8869(93)90231-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013164504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03204271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020606768", 
          "https://doi.org/10.3758/bf03204271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9280.00067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021131894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9280.00067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021131894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmps.1994.1036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023384522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00419607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023545537", 
          "https://doi.org/10.1007/bf00419607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00419607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023545537", 
          "https://doi.org/10.1007/bf00419607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.94.3.341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024187497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03202603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024307607", 
          "https://doi.org/10.3758/bf03202603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024527739", 
          "https://doi.org/10.1007/bf02289729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02290596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026662625", 
          "https://doi.org/10.1007/bf02290596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.85.2.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026981133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2496(90)90003-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031338852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2496(80)90001-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031450777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03209213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034025282", 
          "https://doi.org/10.3758/bf03209213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.20.2.318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034757251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.24.5.1275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039890891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.109.2.340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041687734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03198390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042880498", 
          "https://doi.org/10.3758/bf03198390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0096-3445.128.1.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043445143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03200523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045886117", 
          "https://doi.org/10.3758/bf03200523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/1196-1961.51.3.181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046293733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.19.5.1024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046484454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00049539808258791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046730482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.102.3.567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048847140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1977-0423761-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051453869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3214896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070229040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03210606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071377697", 
          "https://doi.org/10.3758/bf03210606"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-11", 
    "datePublishedReg": "2001-11-01", 
    "description": "We propose a new quantitative model of response times (RTs) that combines some advantages of substantive, process-oriented models and descriptive, statistically oriented accounts. The ex-Wald model assumes that RT may be represented as a convolution of an exponential and a Wald-distributed random variable. The model accounts well for the skew, shape, and hazard function of typical RT distributions. The model is based on two broad information-processing concepts: (1) a data-driven processing rate describing the speed of information accumulation, and (2) strategic response criterion setting. These concepts allow for principled expectations about how experimental factors such as stimulus saliency or response probability might influence RT on a distributional level. We present a factorial experiment involving mental digit comparisons to illustrate the application of the model, and to explain how substantive hypotheses about selective factor effects can be tested via likelihood ratio tests.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3758/bf03195403", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1319746", 
        "issn": [
          "1554-351X", 
          "1532-5970"
        ], 
        "name": "Behavior Research Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "The ex-Wald distribution as a descriptive model of response times", 
    "pagination": "457-469", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "97611177a256f5816aeb9194fcfbb6d9dff79b7f937d2550c842ca7d8ac75daa"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11816448"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8413015"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3758/bf03195403"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031776973"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3758/bf03195403", 
      "https://app.dimensions.ai/details/publication/pub.1031776973"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3758/BF03195403"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/bf03195403'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/bf03195403'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/bf03195403'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/bf03195403'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      73 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3758/bf03195403 schema:about N08b443869e424ca2b50a756ae59e6b63
2 N0bfb79e8520b463e8b43abb12f0b5a86
3 N58ce01b543df4d2b8ec3a908564a5dfa
4 N75cab9a71004419cb869a6f9c0848e8f
5 N7ad9b92a6d31489ea084d7e6a0ca5db6
6 Nb3e73109f6c84f3cb3905a432684482a
7 Nb6dadd933bcc4a3e852c305b266c6eb3
8 Nbb35613c18e34a24ad4a039ba229a561
9 Nc2adac4836634cf1ba904d2802f1ce00
10 Ncd45b4a5a7a74722b86502be95470c27
11 Nd0b43839f7174e418cd4ae01c64e9071
12 anzsrc-for:17
13 anzsrc-for:1701
14 schema:author Ncf4bf046b5fa4cf49d69a197e7377a5f
15 schema:citation sg:pub.10.1007/bf00419607
16 sg:pub.10.1007/bf02289729
17 sg:pub.10.1007/bf02290596
18 sg:pub.10.3758/bf03198390
19 sg:pub.10.3758/bf03200523
20 sg:pub.10.3758/bf03202603
21 sg:pub.10.3758/bf03204271
22 sg:pub.10.3758/bf03206050
23 sg:pub.10.3758/bf03209213
24 sg:pub.10.3758/bf03210606
25 https://doi.org/10.1006/jmps.1994.1036
26 https://doi.org/10.1016/0022-2496(65)90014-3
27 https://doi.org/10.1016/0022-2496(80)90001-2
28 https://doi.org/10.1016/0022-2496(90)90003-r
29 https://doi.org/10.1016/0042-6989(92)90006-5
30 https://doi.org/10.1016/0160-2896(94)90021-3
31 https://doi.org/10.1016/0165-4896(92)90044-6
32 https://doi.org/10.1016/0191-8869(93)90231-q
33 https://doi.org/10.1037/0033-2909.109.2.340
34 https://doi.org/10.1037/0033-295x.102.3.567
35 https://doi.org/10.1037/0033-295x.83.3.190
36 https://doi.org/10.1037/0033-295x.85.2.59
37 https://doi.org/10.1037/0033-295x.94.3.341
38 https://doi.org/10.1037/0096-3445.128.1.32
39 https://doi.org/10.1037/0278-7393.19.5.1024
40 https://doi.org/10.1037/0278-7393.20.2.318
41 https://doi.org/10.1037/0278-7393.24.5.1275
42 https://doi.org/10.1037/1196-1961.51.3.181
43 https://doi.org/10.1037/h0021740
44 https://doi.org/10.1080/00049539808258791
45 https://doi.org/10.1090/s0025-5718-1977-0423761-x
46 https://doi.org/10.1111/1467-9280.00067
47 https://doi.org/10.2307/3214896
48 schema:datePublished 2001-11
49 schema:datePublishedReg 2001-11-01
50 schema:description We propose a new quantitative model of response times (RTs) that combines some advantages of substantive, process-oriented models and descriptive, statistically oriented accounts. The ex-Wald model assumes that RT may be represented as a convolution of an exponential and a Wald-distributed random variable. The model accounts well for the skew, shape, and hazard function of typical RT distributions. The model is based on two broad information-processing concepts: (1) a data-driven processing rate describing the speed of information accumulation, and (2) strategic response criterion setting. These concepts allow for principled expectations about how experimental factors such as stimulus saliency or response probability might influence RT on a distributional level. We present a factorial experiment involving mental digit comparisons to illustrate the application of the model, and to explain how substantive hypotheses about selective factor effects can be tested via likelihood ratio tests.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N033bfe614eb34eb1a86b2bf0abea398a
55 N48ab69b9145d4f788fa8f83a4a03f0f7
56 sg:journal.1319746
57 schema:name The ex-Wald distribution as a descriptive model of response times
58 schema:pagination 457-469
59 schema:productId N3a133d186ed44f7199b61b1629f29305
60 N52c8e6644b224434ac94da8b93c3846e
61 N6e6f8d49e2a3485b8702e72a68681abc
62 N743f3bfaf2394b8fba9f6331df0cafed
63 Nfbd14d8bdff643e4908ba0ff67f93e05
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031776973
65 https://doi.org/10.3758/bf03195403
66 schema:sdDatePublished 2019-04-10T20:45
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Naff7e96408e042ab8129ce7e68a2dcb4
69 schema:url http://link.springer.com/10.3758/BF03195403
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N033bfe614eb34eb1a86b2bf0abea398a schema:volumeNumber 33
74 rdf:type schema:PublicationVolume
75 N08b443869e424ca2b50a756ae59e6b63 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
76 schema:name Psychomotor Performance
77 rdf:type schema:DefinedTerm
78 N0bfb79e8520b463e8b43abb12f0b5a86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
79 schema:name Reaction Time
80 rdf:type schema:DefinedTerm
81 N3a133d186ed44f7199b61b1629f29305 schema:name readcube_id
82 schema:value 97611177a256f5816aeb9194fcfbb6d9dff79b7f937d2550c842ca7d8ac75daa
83 rdf:type schema:PropertyValue
84 N48ab69b9145d4f788fa8f83a4a03f0f7 schema:issueNumber 4
85 rdf:type schema:PublicationIssue
86 N52c8e6644b224434ac94da8b93c3846e schema:name doi
87 schema:value 10.3758/bf03195403
88 rdf:type schema:PropertyValue
89 N58ce01b543df4d2b8ec3a908564a5dfa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
90 schema:name Adolescent
91 rdf:type schema:DefinedTerm
92 N6e6f8d49e2a3485b8702e72a68681abc schema:name dimensions_id
93 schema:value pub.1031776973
94 rdf:type schema:PropertyValue
95 N743f3bfaf2394b8fba9f6331df0cafed schema:name nlm_unique_id
96 schema:value 8413015
97 rdf:type schema:PropertyValue
98 N75cab9a71004419cb869a6f9c0848e8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
99 schema:name Likelihood Functions
100 rdf:type schema:DefinedTerm
101 N7ad9b92a6d31489ea084d7e6a0ca5db6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Male
103 rdf:type schema:DefinedTerm
104 Naff7e96408e042ab8129ce7e68a2dcb4 schema:name Springer Nature - SN SciGraph project
105 rdf:type schema:Organization
106 Nb3e73109f6c84f3cb3905a432684482a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Models, Statistical
108 rdf:type schema:DefinedTerm
109 Nb6dadd933bcc4a3e852c305b266c6eb3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Problem Solving
111 rdf:type schema:DefinedTerm
112 Nbb35613c18e34a24ad4a039ba229a561 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Data Interpretation, Statistical
114 rdf:type schema:DefinedTerm
115 Nc2adac4836634cf1ba904d2802f1ce00 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Humans
117 rdf:type schema:DefinedTerm
118 Ncd45b4a5a7a74722b86502be95470c27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Adult
120 rdf:type schema:DefinedTerm
121 Ncf4bf046b5fa4cf49d69a197e7377a5f rdf:first Ne71d2cbf9365483e9efc49d415c26831
122 rdf:rest rdf:nil
123 Nd0b43839f7174e418cd4ae01c64e9071 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Concept Formation
125 rdf:type schema:DefinedTerm
126 Ne71d2cbf9365483e9efc49d415c26831 schema:affiliation https://www.grid.ac/institutes/grid.5590.9
127 schema:familyName Schwarz
128 schema:givenName Wolfgang
129 rdf:type schema:Person
130 Nfbd14d8bdff643e4908ba0ff67f93e05 schema:name pubmed_id
131 schema:value 11816448
132 rdf:type schema:PropertyValue
133 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
134 schema:name Psychology and Cognitive Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
137 schema:name Psychology
138 rdf:type schema:DefinedTerm
139 sg:journal.1319746 schema:issn 1532-5970
140 1554-351X
141 schema:name Behavior Research Methods
142 rdf:type schema:Periodical
143 sg:pub.10.1007/bf00419607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023545537
144 https://doi.org/10.1007/bf00419607
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bf02289729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024527739
147 https://doi.org/10.1007/bf02289729
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf02290596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026662625
150 https://doi.org/10.1007/bf02290596
151 rdf:type schema:CreativeWork
152 sg:pub.10.3758/bf03198390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042880498
153 https://doi.org/10.3758/bf03198390
154 rdf:type schema:CreativeWork
155 sg:pub.10.3758/bf03200523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045886117
156 https://doi.org/10.3758/bf03200523
157 rdf:type schema:CreativeWork
158 sg:pub.10.3758/bf03202603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024307607
159 https://doi.org/10.3758/bf03202603
160 rdf:type schema:CreativeWork
161 sg:pub.10.3758/bf03204271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020606768
162 https://doi.org/10.3758/bf03204271
163 rdf:type schema:CreativeWork
164 sg:pub.10.3758/bf03206050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009303323
165 https://doi.org/10.3758/bf03206050
166 rdf:type schema:CreativeWork
167 sg:pub.10.3758/bf03209213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034025282
168 https://doi.org/10.3758/bf03209213
169 rdf:type schema:CreativeWork
170 sg:pub.10.3758/bf03210606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071377697
171 https://doi.org/10.3758/bf03210606
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1006/jmps.1994.1036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023384522
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/0022-2496(65)90014-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011381760
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/0022-2496(80)90001-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031450777
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/0022-2496(90)90003-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1031338852
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0042-6989(92)90006-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008521185
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0160-2896(94)90021-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012975373
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/0165-4896(92)90044-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000201926
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/0191-8869(93)90231-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1013164504
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1037/0033-2909.109.2.340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041687734
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1037/0033-295x.102.3.567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048847140
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1037/0033-295x.83.3.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010666363
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1037/0033-295x.85.2.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026981133
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1037/0033-295x.94.3.341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024187497
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1037/0096-3445.128.1.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043445143
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1037/0278-7393.19.5.1024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046484454
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1037/0278-7393.20.2.318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034757251
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1037/0278-7393.24.5.1275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039890891
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1037/1196-1961.51.3.181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046293733
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1037/h0021740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005395286
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1080/00049539808258791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046730482
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1090/s0025-5718-1977-0423761-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051453869
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/1467-9280.00067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021131894
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2307/3214896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070229040
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
220 schema:name NICI, University of Nijmegen, Postbus 9104, 6500, HE Nijmegen, The Netherlands
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...