The ex-Wald distribution as a descriptive model of response times View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2001-11

AUTHORS

Wolfgang Schwarz

ABSTRACT

We propose a new quantitative model of response times (RTs) that combines some advantages of substantive, process-oriented models and descriptive, statistically oriented accounts. The ex-Wald model assumes that RT may be represented as a convolution of an exponential and a Wald-distributed random variable. The model accounts well for the skew, shape, and hazard function of typical RT distributions. The model is based on two broad information-processing concepts: (1) a data-driven processing rate describing the speed of information accumulation, and (2) strategic response criterion setting. These concepts allow for principled expectations about how experimental factors such as stimulus saliency or response probability might influence RT on a distributional level. We present a factorial experiment involving mental digit comparisons to illustrate the application of the model, and to explain how substantive hypotheses about selective factor effects can be tested via likelihood ratio tests. More... »

PAGES

457-469

Identifiers

URI

http://scigraph.springernature.com/pub.10.3758/bf03195403

DOI

http://dx.doi.org/10.3758/bf03195403

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031776973

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11816448


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adolescent", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Concept Formation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Data Interpretation, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Likelihood Functions", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Statistical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Problem Solving", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Psychomotor Performance", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reaction Time", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Radboud University Nijmegen", 
          "id": "https://www.grid.ac/institutes/grid.5590.9", 
          "name": [
            "NICI, University of Nijmegen, Postbus 9104, 6500, HE Nijmegen, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schwarz", 
        "givenName": "Wolfgang", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0165-4896(92)90044-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000201926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0021740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005395286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(92)90006-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008521185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0042-6989(92)90006-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008521185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03206050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009303323", 
          "https://doi.org/10.3758/bf03206050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.83.3.190", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010666363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2496(65)90014-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011381760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0160-2896(94)90021-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012975373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0191-8869(93)90231-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013164504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03204271", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020606768", 
          "https://doi.org/10.3758/bf03204271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9280.00067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021131894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-9280.00067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021131894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmps.1994.1036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023384522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00419607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023545537", 
          "https://doi.org/10.1007/bf00419607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00419607", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023545537", 
          "https://doi.org/10.1007/bf00419607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.94.3.341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024187497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03202603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024307607", 
          "https://doi.org/10.3758/bf03202603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02289729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024527739", 
          "https://doi.org/10.1007/bf02289729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02290596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026662625", 
          "https://doi.org/10.1007/bf02290596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.85.2.59", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026981133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2496(90)90003-r", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031338852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2496(80)90001-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031450777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03209213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034025282", 
          "https://doi.org/10.3758/bf03209213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.20.2.318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034757251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.24.5.1275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039890891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.109.2.340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041687734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03198390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042880498", 
          "https://doi.org/10.3758/bf03198390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0096-3445.128.1.32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043445143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03200523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045886117", 
          "https://doi.org/10.3758/bf03200523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/1196-1961.51.3.181", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046293733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.19.5.1024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046484454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00049539808258791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046730482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.102.3.567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048847140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0025-5718-1977-0423761-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051453869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3214896", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070229040"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03210606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071377697", 
          "https://doi.org/10.3758/bf03210606"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-11", 
    "datePublishedReg": "2001-11-01", 
    "description": "We propose a new quantitative model of response times (RTs) that combines some advantages of substantive, process-oriented models and descriptive, statistically oriented accounts. The ex-Wald model assumes that RT may be represented as a convolution of an exponential and a Wald-distributed random variable. The model accounts well for the skew, shape, and hazard function of typical RT distributions. The model is based on two broad information-processing concepts: (1) a data-driven processing rate describing the speed of information accumulation, and (2) strategic response criterion setting. These concepts allow for principled expectations about how experimental factors such as stimulus saliency or response probability might influence RT on a distributional level. We present a factorial experiment involving mental digit comparisons to illustrate the application of the model, and to explain how substantive hypotheses about selective factor effects can be tested via likelihood ratio tests.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3758/bf03195403", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1319746", 
        "issn": [
          "1554-351X", 
          "1532-5970"
        ], 
        "name": "Behavior Research Methods", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "33"
      }
    ], 
    "name": "The ex-Wald distribution as a descriptive model of response times", 
    "pagination": "457-469", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "97611177a256f5816aeb9194fcfbb6d9dff79b7f937d2550c842ca7d8ac75daa"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11816448"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8413015"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3758/bf03195403"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031776973"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3758/bf03195403", 
      "https://app.dimensions.ai/details/publication/pub.1031776973"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:45", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3758/BF03195403"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/bf03195403'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/bf03195403'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/bf03195403'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/bf03195403'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      73 URIs      32 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3758/bf03195403 schema:about N1a792994eb5c414cae5cbc3671ae941a
2 N38908e8c39804143b4b50591402c5f01
3 N4319dcda9aee43b9b0c09a167a175016
4 N435dbc8c384c4cf0b2bfc08f0de12dd5
5 N70f86ded86e14eecaac8bb44e351d799
6 N8480f4f09a8b40eaae164724f172701b
7 N9ccf6d79cc1243d8b95f38d9d2ddef83
8 Ndbf49e2fc3c64835a22c164b5fb7377f
9 Ne40d7e792012492e9ced9f4f5083bac8
10 Ne6590a5f0b8b4c3dbd2f6023e48fd510
11 Nf1cf393d4f7e401e987aaec41c404da8
12 anzsrc-for:17
13 anzsrc-for:1701
14 schema:author N4bdb537fdc71460c94107070b6a95a13
15 schema:citation sg:pub.10.1007/bf00419607
16 sg:pub.10.1007/bf02289729
17 sg:pub.10.1007/bf02290596
18 sg:pub.10.3758/bf03198390
19 sg:pub.10.3758/bf03200523
20 sg:pub.10.3758/bf03202603
21 sg:pub.10.3758/bf03204271
22 sg:pub.10.3758/bf03206050
23 sg:pub.10.3758/bf03209213
24 sg:pub.10.3758/bf03210606
25 https://doi.org/10.1006/jmps.1994.1036
26 https://doi.org/10.1016/0022-2496(65)90014-3
27 https://doi.org/10.1016/0022-2496(80)90001-2
28 https://doi.org/10.1016/0022-2496(90)90003-r
29 https://doi.org/10.1016/0042-6989(92)90006-5
30 https://doi.org/10.1016/0160-2896(94)90021-3
31 https://doi.org/10.1016/0165-4896(92)90044-6
32 https://doi.org/10.1016/0191-8869(93)90231-q
33 https://doi.org/10.1037/0033-2909.109.2.340
34 https://doi.org/10.1037/0033-295x.102.3.567
35 https://doi.org/10.1037/0033-295x.83.3.190
36 https://doi.org/10.1037/0033-295x.85.2.59
37 https://doi.org/10.1037/0033-295x.94.3.341
38 https://doi.org/10.1037/0096-3445.128.1.32
39 https://doi.org/10.1037/0278-7393.19.5.1024
40 https://doi.org/10.1037/0278-7393.20.2.318
41 https://doi.org/10.1037/0278-7393.24.5.1275
42 https://doi.org/10.1037/1196-1961.51.3.181
43 https://doi.org/10.1037/h0021740
44 https://doi.org/10.1080/00049539808258791
45 https://doi.org/10.1090/s0025-5718-1977-0423761-x
46 https://doi.org/10.1111/1467-9280.00067
47 https://doi.org/10.2307/3214896
48 schema:datePublished 2001-11
49 schema:datePublishedReg 2001-11-01
50 schema:description We propose a new quantitative model of response times (RTs) that combines some advantages of substantive, process-oriented models and descriptive, statistically oriented accounts. The ex-Wald model assumes that RT may be represented as a convolution of an exponential and a Wald-distributed random variable. The model accounts well for the skew, shape, and hazard function of typical RT distributions. The model is based on two broad information-processing concepts: (1) a data-driven processing rate describing the speed of information accumulation, and (2) strategic response criterion setting. These concepts allow for principled expectations about how experimental factors such as stimulus saliency or response probability might influence RT on a distributional level. We present a factorial experiment involving mental digit comparisons to illustrate the application of the model, and to explain how substantive hypotheses about selective factor effects can be tested via likelihood ratio tests.
51 schema:genre research_article
52 schema:inLanguage en
53 schema:isAccessibleForFree true
54 schema:isPartOf N27a9aabd35864ca6ae6590fce1c07511
55 Na698333b3f624da5a78ebc6a3f4eb13e
56 sg:journal.1319746
57 schema:name The ex-Wald distribution as a descriptive model of response times
58 schema:pagination 457-469
59 schema:productId N13d0bd10c41741a2a4d1f4a3be0ea7a0
60 N2daf7790fda54fe78019d0ffbc2b377d
61 N41d48fd3528a493eb9ba00fd901262e3
62 N62b7a2e39c2e453c9599e1fc65fffe9c
63 Ne29d0f62e77b4430b50007269294e7a7
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031776973
65 https://doi.org/10.3758/bf03195403
66 schema:sdDatePublished 2019-04-10T20:45
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher Nc061f22a5cd5440cb320acfb1046a506
69 schema:url http://link.springer.com/10.3758/BF03195403
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N13d0bd10c41741a2a4d1f4a3be0ea7a0 schema:name doi
74 schema:value 10.3758/bf03195403
75 rdf:type schema:PropertyValue
76 N1a792994eb5c414cae5cbc3671ae941a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Adolescent
78 rdf:type schema:DefinedTerm
79 N27a9aabd35864ca6ae6590fce1c07511 schema:volumeNumber 33
80 rdf:type schema:PublicationVolume
81 N2daf7790fda54fe78019d0ffbc2b377d schema:name pubmed_id
82 schema:value 11816448
83 rdf:type schema:PropertyValue
84 N38908e8c39804143b4b50591402c5f01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Reaction Time
86 rdf:type schema:DefinedTerm
87 N41d48fd3528a493eb9ba00fd901262e3 schema:name readcube_id
88 schema:value 97611177a256f5816aeb9194fcfbb6d9dff79b7f937d2550c842ca7d8ac75daa
89 rdf:type schema:PropertyValue
90 N4319dcda9aee43b9b0c09a167a175016 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
91 schema:name Adult
92 rdf:type schema:DefinedTerm
93 N435dbc8c384c4cf0b2bfc08f0de12dd5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Data Interpretation, Statistical
95 rdf:type schema:DefinedTerm
96 N4bdb537fdc71460c94107070b6a95a13 rdf:first Naba940c9a08646e289ba31dc637a024a
97 rdf:rest rdf:nil
98 N62b7a2e39c2e453c9599e1fc65fffe9c schema:name nlm_unique_id
99 schema:value 8413015
100 rdf:type schema:PropertyValue
101 N70f86ded86e14eecaac8bb44e351d799 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Psychomotor Performance
103 rdf:type schema:DefinedTerm
104 N8480f4f09a8b40eaae164724f172701b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Humans
106 rdf:type schema:DefinedTerm
107 N9ccf6d79cc1243d8b95f38d9d2ddef83 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Male
109 rdf:type schema:DefinedTerm
110 Na698333b3f624da5a78ebc6a3f4eb13e schema:issueNumber 4
111 rdf:type schema:PublicationIssue
112 Naba940c9a08646e289ba31dc637a024a schema:affiliation https://www.grid.ac/institutes/grid.5590.9
113 schema:familyName Schwarz
114 schema:givenName Wolfgang
115 rdf:type schema:Person
116 Nc061f22a5cd5440cb320acfb1046a506 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Ndbf49e2fc3c64835a22c164b5fb7377f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Problem Solving
120 rdf:type schema:DefinedTerm
121 Ne29d0f62e77b4430b50007269294e7a7 schema:name dimensions_id
122 schema:value pub.1031776973
123 rdf:type schema:PropertyValue
124 Ne40d7e792012492e9ced9f4f5083bac8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Likelihood Functions
126 rdf:type schema:DefinedTerm
127 Ne6590a5f0b8b4c3dbd2f6023e48fd510 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Models, Statistical
129 rdf:type schema:DefinedTerm
130 Nf1cf393d4f7e401e987aaec41c404da8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Concept Formation
132 rdf:type schema:DefinedTerm
133 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
134 schema:name Psychology and Cognitive Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
137 schema:name Psychology
138 rdf:type schema:DefinedTerm
139 sg:journal.1319746 schema:issn 1532-5970
140 1554-351X
141 schema:name Behavior Research Methods
142 rdf:type schema:Periodical
143 sg:pub.10.1007/bf00419607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023545537
144 https://doi.org/10.1007/bf00419607
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/bf02289729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024527739
147 https://doi.org/10.1007/bf02289729
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/bf02290596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026662625
150 https://doi.org/10.1007/bf02290596
151 rdf:type schema:CreativeWork
152 sg:pub.10.3758/bf03198390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042880498
153 https://doi.org/10.3758/bf03198390
154 rdf:type schema:CreativeWork
155 sg:pub.10.3758/bf03200523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045886117
156 https://doi.org/10.3758/bf03200523
157 rdf:type schema:CreativeWork
158 sg:pub.10.3758/bf03202603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024307607
159 https://doi.org/10.3758/bf03202603
160 rdf:type schema:CreativeWork
161 sg:pub.10.3758/bf03204271 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020606768
162 https://doi.org/10.3758/bf03204271
163 rdf:type schema:CreativeWork
164 sg:pub.10.3758/bf03206050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009303323
165 https://doi.org/10.3758/bf03206050
166 rdf:type schema:CreativeWork
167 sg:pub.10.3758/bf03209213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034025282
168 https://doi.org/10.3758/bf03209213
169 rdf:type schema:CreativeWork
170 sg:pub.10.3758/bf03210606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071377697
171 https://doi.org/10.3758/bf03210606
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1006/jmps.1994.1036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023384522
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/0022-2496(65)90014-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011381760
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/0022-2496(80)90001-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031450777
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/0022-2496(90)90003-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1031338852
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/0042-6989(92)90006-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008521185
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/0160-2896(94)90021-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012975373
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/0165-4896(92)90044-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000201926
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/0191-8869(93)90231-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1013164504
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1037/0033-2909.109.2.340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041687734
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1037/0033-295x.102.3.567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048847140
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1037/0033-295x.83.3.190 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010666363
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1037/0033-295x.85.2.59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026981133
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1037/0033-295x.94.3.341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024187497
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1037/0096-3445.128.1.32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043445143
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1037/0278-7393.19.5.1024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046484454
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1037/0278-7393.20.2.318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034757251
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1037/0278-7393.24.5.1275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039890891
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1037/1196-1961.51.3.181 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046293733
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1037/h0021740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005395286
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1080/00049539808258791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046730482
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1090/s0025-5718-1977-0423761-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1051453869
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1111/1467-9280.00067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021131894
216 rdf:type schema:CreativeWork
217 https://doi.org/10.2307/3214896 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070229040
218 rdf:type schema:CreativeWork
219 https://www.grid.ac/institutes/grid.5590.9 schema:alternateName Radboud University Nijmegen
220 schema:name NICI, University of Nijmegen, Postbus 9104, 6500, HE Nijmegen, The Netherlands
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...