Risks of drawing inferences about cognitive processes from model fits to individual versus average performance View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2005-06

AUTHORS

W. K. Estes, W. Todd Maddox

ABSTRACT

With the goal of drawing inferences about underlying processes from fits of theoretical models to cognitive data, we examined the tradeoff of risks of depending on model fits to individual performance versus risks of depending on fits to averaged data with respect to estimation of values of a model's parameters. Comparisons based on several models applied to experiments on recognition and categorization and to artificial, computer-generated data showed that results of using the two types of model fitting are strongly determined by two factors: model complexity and number of subjects. Reasonably accurate information about true parameter values was found only for model fits to individual performance and then only for some of the parameters of a complex model. Suggested guidelines are given for circumventing a variety of obstacles to successful recovery of useful estimates of a model's parameters from applications to cognitive data. More... »

PAGES

403-408

Identifiers

URI

http://scigraph.springernature.com/pub.10.3758/bf03193784

DOI

http://dx.doi.org/10.3758/bf03193784

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032206944

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16235625


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cognition", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Memory", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recognition (Psychology)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indiana University System", 
          "id": "https://www.grid.ac/institutes/grid.257410.5", 
          "name": [
            "Department of Psychology, Indiana University, 47405, Bloomington, IN"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Estes", 
        "givenName": "W. K.", 
        "id": "sg:person.01100743260.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100743260.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas at Austin", 
          "id": "https://www.grid.ac/institutes/grid.89336.37", 
          "name": [
            "Department of Psychology, University of Texas, Mezes Hall 330, 78712, Austin, TX"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Todd Maddox", 
        "givenName": "W.", 
        "id": "sg:person.0655207252.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655207252.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3758/bf03196748", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000595896", 
          "https://doi.org/10.3758/bf03196748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/h0045156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004564434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.109.3.472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006950861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-295x.109.3.472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006950861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.20.6.1341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012584214"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03198418", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016688539", 
          "https://doi.org/10.3758/bf03198418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03206893", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017867228", 
          "https://doi.org/10.3758/bf03206893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9280.1994.tb00651.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019391666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-9280.1994.tb00651.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019391666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2496(02)00028-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025441488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2496(02)00028-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025441488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.28.6.1003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026974077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.28.6.1003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026974077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.19.3.689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030024785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0749-596x(91)90025-f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030098481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.21.2.267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034718176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.16.2.179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042616102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0033-2909.101.1.147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044652616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03196254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045035127", 
          "https://doi.org/10.3758/bf03196254"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmps.1999.1283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048118592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3758/bf03196105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051075776", 
          "https://doi.org/10.3758/bf03196105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1037/0278-7393.16.2.163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051646573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780195073355.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098745749"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-06", 
    "datePublishedReg": "2005-06-01", 
    "description": "With the goal of drawing inferences about underlying processes from fits of theoretical models to cognitive data, we examined the tradeoff of risks of depending on model fits to individual performance versus risks of depending on fits to averaged data with respect to estimation of values of a model's parameters. Comparisons based on several models applied to experiments on recognition and categorization and to artificial, computer-generated data showed that results of using the two types of model fitting are strongly determined by two factors: model complexity and number of subjects. Reasonably accurate information about true parameter values was found only for model fits to individual performance and then only for some of the parameters of a complex model. Suggested guidelines are given for circumventing a variety of obstacles to successful recovery of useful estimates of a model's parameters from applications to cognitive data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3758/bf03193784", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2548983", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1082645", 
        "issn": [
          "1069-9384", 
          "1531-5320"
        ], 
        "name": "Bulletin of the Psychonomic Society", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "12"
      }
    ], 
    "name": "Risks of drawing inferences about cognitive processes from model fits to individual versus average performance", 
    "pagination": "403-408", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "996d4fa72e9a349533516f5c770ec46edc0992cdbff9e6173ae5561610f2c0e9"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16235625"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9502924"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3758/bf03193784"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032206944"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3758/bf03193784", 
      "https://app.dimensions.ai/details/publication/pub.1032206944"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000506.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3758/BF03193784"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3758/bf03193784'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3758/bf03193784'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3758/bf03193784'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3758/bf03193784'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      21 PREDICATES      53 URIs      26 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3758/bf03193784 schema:about N26b97a2e21f94a54ae6f6af60d0cc815
2 N6e344fb984724ce38884bde52513558c
3 N80cfcb361bfc42f6a6a0ce190cc286a8
4 Nb523bf2020e54c4196fca686f4999410
5 Ne13cdf3774e248fa8869004ecfbd3a3e
6 anzsrc-for:17
7 anzsrc-for:1701
8 schema:author N1f77b4c3e756408d8eed4ee41aa4fe5a
9 schema:citation sg:pub.10.3758/bf03196105
10 sg:pub.10.3758/bf03196254
11 sg:pub.10.3758/bf03196748
12 sg:pub.10.3758/bf03198418
13 sg:pub.10.3758/bf03206893
14 https://doi.org/10.1006/jmps.1999.1283
15 https://doi.org/10.1016/0749-596x(91)90025-f
16 https://doi.org/10.1016/s0022-2496(02)00028-7
17 https://doi.org/10.1037/0033-2909.101.1.147
18 https://doi.org/10.1037/0033-295x.109.3.472
19 https://doi.org/10.1037/0278-7393.16.2.163
20 https://doi.org/10.1037/0278-7393.16.2.179
21 https://doi.org/10.1037/0278-7393.19.3.689
22 https://doi.org/10.1037/0278-7393.20.6.1341
23 https://doi.org/10.1037/0278-7393.21.2.267
24 https://doi.org/10.1037/0278-7393.28.6.1003
25 https://doi.org/10.1037/h0045156
26 https://doi.org/10.1093/acprof:oso/9780195073355.001.0001
27 https://doi.org/10.1111/j.1467-9280.1994.tb00651.x
28 schema:datePublished 2005-06
29 schema:datePublishedReg 2005-06-01
30 schema:description With the goal of drawing inferences about underlying processes from fits of theoretical models to cognitive data, we examined the tradeoff of risks of depending on model fits to individual performance versus risks of depending on fits to averaged data with respect to estimation of values of a model's parameters. Comparisons based on several models applied to experiments on recognition and categorization and to artificial, computer-generated data showed that results of using the two types of model fitting are strongly determined by two factors: model complexity and number of subjects. Reasonably accurate information about true parameter values was found only for model fits to individual performance and then only for some of the parameters of a complex model. Suggested guidelines are given for circumventing a variety of obstacles to successful recovery of useful estimates of a model's parameters from applications to cognitive data.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf N94de2670f20145e1ab5ecb0911b39a30
35 N9d68e923625843adaa6de4261e5aa742
36 sg:journal.1082645
37 schema:name Risks of drawing inferences about cognitive processes from model fits to individual versus average performance
38 schema:pagination 403-408
39 schema:productId N27d3e7d228a14d35bcc679dea6f1989c
40 N80b484e0d1574dedb32198aea09a8eed
41 N9dfc280732144dc78b7d05c3c1c5c23a
42 Neabf9efa1d334a77b8b98d8ed00800bd
43 Nec59c85a04bd48e79ffc031866d58c10
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032206944
45 https://doi.org/10.3758/bf03193784
46 schema:sdDatePublished 2019-04-11T01:58
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N7e4d2c20941340dda2a2e4e449c3ec3e
49 schema:url http://link.springer.com/10.3758/BF03193784
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N1f77b4c3e756408d8eed4ee41aa4fe5a rdf:first sg:person.01100743260.16
54 rdf:rest Neb22d6fdc1de4f72960ba9ccacc62344
55 N26b97a2e21f94a54ae6f6af60d0cc815 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
56 schema:name Recognition (Psychology)
57 rdf:type schema:DefinedTerm
58 N27d3e7d228a14d35bcc679dea6f1989c schema:name doi
59 schema:value 10.3758/bf03193784
60 rdf:type schema:PropertyValue
61 N6e344fb984724ce38884bde52513558c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
62 schema:name Cognition
63 rdf:type schema:DefinedTerm
64 N7e4d2c20941340dda2a2e4e449c3ec3e schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 N80b484e0d1574dedb32198aea09a8eed schema:name pubmed_id
67 schema:value 16235625
68 rdf:type schema:PropertyValue
69 N80cfcb361bfc42f6a6a0ce190cc286a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
70 schema:name Psychology
71 rdf:type schema:DefinedTerm
72 N94de2670f20145e1ab5ecb0911b39a30 schema:issueNumber 3
73 rdf:type schema:PublicationIssue
74 N9d68e923625843adaa6de4261e5aa742 schema:volumeNumber 12
75 rdf:type schema:PublicationVolume
76 N9dfc280732144dc78b7d05c3c1c5c23a schema:name nlm_unique_id
77 schema:value 9502924
78 rdf:type schema:PropertyValue
79 Nb523bf2020e54c4196fca686f4999410 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Memory
81 rdf:type schema:DefinedTerm
82 Ne13cdf3774e248fa8869004ecfbd3a3e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Humans
84 rdf:type schema:DefinedTerm
85 Neabf9efa1d334a77b8b98d8ed00800bd schema:name dimensions_id
86 schema:value pub.1032206944
87 rdf:type schema:PropertyValue
88 Neb22d6fdc1de4f72960ba9ccacc62344 rdf:first sg:person.0655207252.70
89 rdf:rest rdf:nil
90 Nec59c85a04bd48e79ffc031866d58c10 schema:name readcube_id
91 schema:value 996d4fa72e9a349533516f5c770ec46edc0992cdbff9e6173ae5561610f2c0e9
92 rdf:type schema:PropertyValue
93 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
94 schema:name Psychology and Cognitive Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
97 schema:name Psychology
98 rdf:type schema:DefinedTerm
99 sg:grant.2548983 http://pending.schema.org/fundedItem sg:pub.10.3758/bf03193784
100 rdf:type schema:MonetaryGrant
101 sg:journal.1082645 schema:issn 1069-9384
102 1531-5320
103 schema:name Bulletin of the Psychonomic Society
104 rdf:type schema:Periodical
105 sg:person.01100743260.16 schema:affiliation https://www.grid.ac/institutes/grid.257410.5
106 schema:familyName Estes
107 schema:givenName W. K.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100743260.16
109 rdf:type schema:Person
110 sg:person.0655207252.70 schema:affiliation https://www.grid.ac/institutes/grid.89336.37
111 schema:familyName Todd Maddox
112 schema:givenName W.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0655207252.70
114 rdf:type schema:Person
115 sg:pub.10.3758/bf03196105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051075776
116 https://doi.org/10.3758/bf03196105
117 rdf:type schema:CreativeWork
118 sg:pub.10.3758/bf03196254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045035127
119 https://doi.org/10.3758/bf03196254
120 rdf:type schema:CreativeWork
121 sg:pub.10.3758/bf03196748 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000595896
122 https://doi.org/10.3758/bf03196748
123 rdf:type schema:CreativeWork
124 sg:pub.10.3758/bf03198418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016688539
125 https://doi.org/10.3758/bf03198418
126 rdf:type schema:CreativeWork
127 sg:pub.10.3758/bf03206893 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017867228
128 https://doi.org/10.3758/bf03206893
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1006/jmps.1999.1283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048118592
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/0749-596x(91)90025-f schema:sameAs https://app.dimensions.ai/details/publication/pub.1030098481
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0022-2496(02)00028-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025441488
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1037/0033-2909.101.1.147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044652616
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1037/0033-295x.109.3.472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006950861
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1037/0278-7393.16.2.163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051646573
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1037/0278-7393.16.2.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042616102
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1037/0278-7393.19.3.689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030024785
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1037/0278-7393.20.6.1341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012584214
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1037/0278-7393.21.2.267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034718176
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1037/0278-7393.28.6.1003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026974077
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1037/h0045156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004564434
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1093/acprof:oso/9780195073355.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098745749
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1111/j.1467-9280.1994.tb00651.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019391666
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.257410.5 schema:alternateName Indiana University System
159 schema:name Department of Psychology, Indiana University, 47405, Bloomington, IN
160 rdf:type schema:Organization
161 https://www.grid.ac/institutes/grid.89336.37 schema:alternateName The University of Texas at Austin
162 schema:name Department of Psychology, University of Texas, Mezes Hall 330, 78712, Austin, TX
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...