Correlation analysis of digital images of flows with subpixel accuracy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-05

AUTHORS

N. A. Fomin, O. V. Meleeva

ABSTRACT

New algorithms for processing noisy specklegrams are described which allow quantitative diagnostics of the microstructure of shock-wave flows with subpixel accuracy with the use of statistical analysis of the speckle fields recorded numerically and perturbed by refraction in the studied flows. The developed software makes it possible to recover up to 10,000 vectors of deflection angles of the probing radiation in a two-dimensional region 20 × 30 mm in size in a speckle field image with a magnification M = 1. More... »

PAGES

287-292

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s8756699012030119

DOI

http://dx.doi.org/10.3103/s8756699012030119

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035226161


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus, ul. Brovki 15, 220072, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.410300.6", 
          "name": [
            "Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus, ul. Brovki 15, 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fomin", 
        "givenName": "N. A.", 
        "id": "sg:person.010711065255.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010711065255.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus, ul. Brovki 15, 220072, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.410300.6", 
          "name": [
            "Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus, ul. Brovki 15, 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meleeva", 
        "givenName": "O. V.", 
        "id": "sg:person.011305356733.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011305356733.13"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-540-85168-4_73", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027142991", 
          "https://doi.org/10.1007/978-3-540-85168-4_73"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03707-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037260968", 
          "https://doi.org/10.1007/978-3-662-03707-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00189049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004932971", 
          "https://doi.org/10.1007/bf00189049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03637-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000493663", 
          "https://doi.org/10.1007/978-3-662-03637-2"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-05", 
    "datePublishedReg": "2012-05-01", 
    "description": "New algorithms for processing noisy specklegrams are described which allow quantitative diagnostics of the microstructure of shock-wave flows with subpixel accuracy with the use of statistical analysis of the speckle fields recorded numerically and perturbed by refraction in the studied flows. The developed software makes it possible to recover up to 10,000 vectors of deflection angles of the probing radiation in a two-dimensional region 20 \u00d7 30 mm in size in a speckle field image with a magnification M = 1.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s8756699012030119", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136502", 
        "issn": [
          "8756-6990", 
          "1934-7944"
        ], 
        "name": "Optoelectronics, Instrumentation and Data Processing", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "keywords": [
      "shock-wave flows", 
      "new algorithm", 
      "statistical analysis", 
      "magnification M", 
      "accuracy", 
      "subpixel accuracy", 
      "speckle field", 
      "algorithm", 
      "flow", 
      "quantitative diagnostics", 
      "deflection angle", 
      "vector", 
      "analysis", 
      "software", 
      "field", 
      "correlation analysis", 
      "digital images", 
      "size", 
      "use", 
      "angle", 
      "diagnostics", 
      "images", 
      "microstructure", 
      "field images", 
      "specklegram", 
      "refraction", 
      "radiation", 
      "noisy specklegrams", 
      "two-dimensional region 20 \u00d7", 
      "region 20 \u00d7", 
      "speckle field image"
    ], 
    "name": "Correlation analysis of digital images of flows with subpixel accuracy", 
    "pagination": "287-292", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035226161"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s8756699012030119"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s8756699012030119", 
      "https://app.dimensions.ai/details/publication/pub.1035226161"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_584.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s8756699012030119"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s8756699012030119'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s8756699012030119'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s8756699012030119'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s8756699012030119'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      22 PREDICATES      61 URIs      49 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s8756699012030119 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3a38f0f435664e628cde856ec5a5b89e
4 schema:citation sg:pub.10.1007/978-3-540-85168-4_73
5 sg:pub.10.1007/978-3-662-03637-2
6 sg:pub.10.1007/978-3-662-03707-2
7 sg:pub.10.1007/bf00189049
8 schema:datePublished 2012-05
9 schema:datePublishedReg 2012-05-01
10 schema:description New algorithms for processing noisy specklegrams are described which allow quantitative diagnostics of the microstructure of shock-wave flows with subpixel accuracy with the use of statistical analysis of the speckle fields recorded numerically and perturbed by refraction in the studied flows. The developed software makes it possible to recover up to 10,000 vectors of deflection angles of the probing radiation in a two-dimensional region 20 × 30 mm in size in a speckle field image with a magnification M = 1.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N1ce127adca6944faa854b890d9ca8111
15 N3e0d4e531b354243b5b2cd7cad96436e
16 sg:journal.1136502
17 schema:keywords accuracy
18 algorithm
19 analysis
20 angle
21 correlation analysis
22 deflection angle
23 diagnostics
24 digital images
25 field
26 field images
27 flow
28 images
29 magnification M
30 microstructure
31 new algorithm
32 noisy specklegrams
33 quantitative diagnostics
34 radiation
35 refraction
36 region 20 ×
37 shock-wave flows
38 size
39 software
40 speckle field
41 speckle field image
42 specklegram
43 statistical analysis
44 subpixel accuracy
45 two-dimensional region 20 ×
46 use
47 vector
48 schema:name Correlation analysis of digital images of flows with subpixel accuracy
49 schema:pagination 287-292
50 schema:productId N0698ea13d6df466a8db5fa564ac85939
51 N58152dbf51e34c389603735331eff50c
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035226161
53 https://doi.org/10.3103/s8756699012030119
54 schema:sdDatePublished 2021-11-01T18:19
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Naa377b7900c14f35b08766536c68fff3
57 schema:url https://doi.org/10.3103/s8756699012030119
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N0698ea13d6df466a8db5fa564ac85939 schema:name doi
62 schema:value 10.3103/s8756699012030119
63 rdf:type schema:PropertyValue
64 N1ce127adca6944faa854b890d9ca8111 schema:issueNumber 3
65 rdf:type schema:PublicationIssue
66 N3a38f0f435664e628cde856ec5a5b89e rdf:first sg:person.010711065255.90
67 rdf:rest N7b713ae0d92348cb97fc0faf70bf3c58
68 N3e0d4e531b354243b5b2cd7cad96436e schema:volumeNumber 48
69 rdf:type schema:PublicationVolume
70 N58152dbf51e34c389603735331eff50c schema:name dimensions_id
71 schema:value pub.1035226161
72 rdf:type schema:PropertyValue
73 N7b713ae0d92348cb97fc0faf70bf3c58 rdf:first sg:person.011305356733.13
74 rdf:rest rdf:nil
75 Naa377b7900c14f35b08766536c68fff3 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:journal.1136502 schema:issn 1934-7944
84 8756-6990
85 schema:name Optoelectronics, Instrumentation and Data Processing
86 schema:publisher Allerton Press
87 rdf:type schema:Periodical
88 sg:person.010711065255.90 schema:affiliation grid-institutes:grid.410300.6
89 schema:familyName Fomin
90 schema:givenName N. A.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010711065255.90
92 rdf:type schema:Person
93 sg:person.011305356733.13 schema:affiliation grid-institutes:grid.410300.6
94 schema:familyName Meleeva
95 schema:givenName O. V.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011305356733.13
97 rdf:type schema:Person
98 sg:pub.10.1007/978-3-540-85168-4_73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027142991
99 https://doi.org/10.1007/978-3-540-85168-4_73
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/978-3-662-03637-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000493663
102 https://doi.org/10.1007/978-3-662-03637-2
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/978-3-662-03707-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037260968
105 https://doi.org/10.1007/978-3-662-03707-2
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/bf00189049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004932971
108 https://doi.org/10.1007/bf00189049
109 rdf:type schema:CreativeWork
110 grid-institutes:grid.410300.6 schema:alternateName Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus, ul. Brovki 15, 220072, Minsk, Belarus
111 schema:name Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus, ul. Brovki 15, 220072, Minsk, Belarus
112 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...