Ontology type: schema:ScholarlyArticle
2010-04
AUTHORSV. Yu. Osipov, Yu. V. Osipov, V. N. Popov, A. A. Buznikov
ABSTRACTSplitting of orthogonally polarized radiation components at the exit of birefringent crystal prisms (BCPs) having a special structure and fabricated from uniaxial Iceland spar crystals is studied by the vector analysis method. For these prisms, the angle of splitting between the ordinary (o) and extraordinary (e) beams at the BCP exit depends linearly on the angle of incidence of a collimated laser beam onto the BCP entrance face. This dependence has the maximum slope only for two fixed orientations of the optical axis vectors a1 and a2 in both crystal wedges (BCP components). As a result of interference of polarized o- and e-waves, a straight-line interference pattern with a controlled and smoothly changed spatial frequency in the range from 0 to 125 periods/mm can be formed directly at the BCP exit. The BCP ability to form a sinusoidal interference pattern with the modulation depth not lower than 30% and with a varied spatial frequency at the aperture up to 30 mm makes it possible to use the BCP as a basis for creating a compact static Fourier spectrometer with the ultimate theoretical resolution λ/Δλ up to ∼2000. More... »
PAGES181-197
http://scigraph.springernature.com/pub.10.3103/s875669901002010x
DOIhttp://dx.doi.org/10.3103/s875669901002010x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1037044183
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Other Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ioffe Physical Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ul\u2019yanov (Lenin) Saint Petersburg State Electrotechnical University \u201cLETI,\u201d, ul. Prof. Popova 5, 197376, St. Petersburg, Russia",
"Ioffe Physical Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Osipov",
"givenName": "V. Yu.",
"id": "sg:person.011737110415.43",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011737110415.43"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ul\u2019yanov (Lenin) Saint Petersburg State Electrotechnical University \u201cLETI,\u201d, ul. Prof. Popova 5, 197376, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.9905.5",
"name": [
"Ul\u2019yanov (Lenin) Saint Petersburg State Electrotechnical University \u201cLETI,\u201d, ul. Prof. Popova 5, 197376, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Osipov",
"givenName": "Yu. V.",
"id": "sg:person.014443423753.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014443423753.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ul\u2019yanov (Lenin) Saint Petersburg State Electrotechnical University \u201cLETI,\u201d, ul. Prof. Popova 5, 197376, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.9905.5",
"name": [
"Ul\u2019yanov (Lenin) Saint Petersburg State Electrotechnical University \u201cLETI,\u201d, ul. Prof. Popova 5, 197376, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Popov",
"givenName": "V. N.",
"id": "sg:person.016036364753.59",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016036364753.59"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ul\u2019yanov (Lenin) Saint Petersburg State Electrotechnical University \u201cLETI,\u201d, ul. Prof. Popova 5, 197376, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.9905.5",
"name": [
"Ul\u2019yanov (Lenin) Saint Petersburg State Electrotechnical University \u201cLETI,\u201d, ul. Prof. Popova 5, 197376, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Buznikov",
"givenName": "A. A.",
"id": "sg:person.010067123645.23",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010067123645.23"
],
"type": "Person"
}
],
"datePublished": "2010-04",
"datePublishedReg": "2010-04-01",
"description": "Splitting of orthogonally polarized radiation components at the exit of birefringent crystal prisms (BCPs) having a special structure and fabricated from uniaxial Iceland spar crystals is studied by the vector analysis method. For these prisms, the angle of splitting between the ordinary (o) and extraordinary (e) beams at the BCP exit depends linearly on the angle of incidence of a collimated laser beam onto the BCP entrance face. This dependence has the maximum slope only for two fixed orientations of the optical axis vectors a1 and a2 in both crystal wedges (BCP components). As a result of interference of polarized o- and e-waves, a straight-line interference pattern with a controlled and smoothly changed spatial frequency in the range from 0 to 125 periods/mm can be formed directly at the BCP exit. The BCP ability to form a sinusoidal interference pattern with the modulation depth not lower than 30% and with a varied spatial frequency at the aperture up to 30 mm makes it possible to use the BCP as a basis for creating a compact static Fourier spectrometer with the ultimate theoretical resolution \u03bb/\u0394\u03bb up to \u223c2000.",
"genre": "article",
"id": "sg:pub.10.3103/s875669901002010x",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136502",
"issn": [
"8756-6990",
"1934-7944"
],
"name": "Optoelectronics, Instrumentation and Data Processing",
"publisher": "Allerton Press",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "46"
}
],
"keywords": [
"interference pattern",
"crystal prism",
"collimated laser beam",
"sinusoidal interference pattern",
"angle of incidence",
"laser beam",
"crystal wedge",
"varied spatial frequency",
"modulation depth",
"extraordinary beams",
"Iceland spar crystals",
"Fourier spectroscopy",
"radiation components",
"entrance face",
"result of interference",
"Fourier spectrometer",
"spatial frequency",
"beam",
"splitting",
"spar crystals",
"prism",
"\u0394\u03bb",
"spectrometer",
"spectroscopy",
"angle",
"aperture",
"waves",
"crystals",
"dependence",
"frequency",
"structure",
"range",
"maximum slope",
"orientation",
"exit",
"vector analysis method",
"interference",
"special structure",
"depth",
"formation",
"components",
"slope",
"method",
"analysis method",
"wedge",
"results",
"A1",
"basis",
"patterns",
"use",
"ability",
"face",
"A2",
"incidence",
"period/"
],
"name": "Formation of variable-spatial frequency interference patterns with the use of birefringent crystal prisms for laser Fourier spectroscopy",
"pagination": "181-197",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1037044183"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.3103/s875669901002010x"
]
}
],
"sameAs": [
"https://doi.org/10.3103/s875669901002010x",
"https://app.dimensions.ai/details/publication/pub.1037044183"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:26",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_515.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.3103/s875669901002010x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s875669901002010x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s875669901002010x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s875669901002010x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s875669901002010x'
This table displays all metadata directly associated to this object as RDF triples.
138 TRIPLES
21 PREDICATES
81 URIs
73 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.3103/s875669901002010x | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0299 |
3 | ″ | schema:author | Nbd484c26e19a4c5b947de0503cc18965 |
4 | ″ | schema:datePublished | 2010-04 |
5 | ″ | schema:datePublishedReg | 2010-04-01 |
6 | ″ | schema:description | Splitting of orthogonally polarized radiation components at the exit of birefringent crystal prisms (BCPs) having a special structure and fabricated from uniaxial Iceland spar crystals is studied by the vector analysis method. For these prisms, the angle of splitting between the ordinary (o) and extraordinary (e) beams at the BCP exit depends linearly on the angle of incidence of a collimated laser beam onto the BCP entrance face. This dependence has the maximum slope only for two fixed orientations of the optical axis vectors a1 and a2 in both crystal wedges (BCP components). As a result of interference of polarized o- and e-waves, a straight-line interference pattern with a controlled and smoothly changed spatial frequency in the range from 0 to 125 periods/mm can be formed directly at the BCP exit. The BCP ability to form a sinusoidal interference pattern with the modulation depth not lower than 30% and with a varied spatial frequency at the aperture up to 30 mm makes it possible to use the BCP as a basis for creating a compact static Fourier spectrometer with the ultimate theoretical resolution λ/Δλ up to ∼2000. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N1107a40a22384c959fcf1bcfd8eaffa9 |
11 | ″ | ″ | N2a7ab3bcba854edea24ade80455d9429 |
12 | ″ | ″ | sg:journal.1136502 |
13 | ″ | schema:keywords | A1 |
14 | ″ | ″ | A2 |
15 | ″ | ″ | Fourier spectrometer |
16 | ″ | ″ | Fourier spectroscopy |
17 | ″ | ″ | Iceland spar crystals |
18 | ″ | ″ | ability |
19 | ″ | ″ | analysis method |
20 | ″ | ″ | angle |
21 | ″ | ″ | angle of incidence |
22 | ″ | ″ | aperture |
23 | ″ | ″ | basis |
24 | ″ | ″ | beam |
25 | ″ | ″ | collimated laser beam |
26 | ″ | ″ | components |
27 | ″ | ″ | crystal prism |
28 | ″ | ″ | crystal wedge |
29 | ″ | ″ | crystals |
30 | ″ | ″ | dependence |
31 | ″ | ″ | depth |
32 | ″ | ″ | entrance face |
33 | ″ | ″ | exit |
34 | ″ | ″ | extraordinary beams |
35 | ″ | ″ | face |
36 | ″ | ″ | formation |
37 | ″ | ″ | frequency |
38 | ″ | ″ | incidence |
39 | ″ | ″ | interference |
40 | ″ | ″ | interference pattern |
41 | ″ | ″ | laser beam |
42 | ″ | ″ | maximum slope |
43 | ″ | ″ | method |
44 | ″ | ″ | modulation depth |
45 | ″ | ″ | orientation |
46 | ″ | ″ | patterns |
47 | ″ | ″ | period/ |
48 | ″ | ″ | prism |
49 | ″ | ″ | radiation components |
50 | ″ | ″ | range |
51 | ″ | ″ | result of interference |
52 | ″ | ″ | results |
53 | ″ | ″ | sinusoidal interference pattern |
54 | ″ | ″ | slope |
55 | ″ | ″ | spar crystals |
56 | ″ | ″ | spatial frequency |
57 | ″ | ″ | special structure |
58 | ″ | ″ | spectrometer |
59 | ″ | ″ | spectroscopy |
60 | ″ | ″ | splitting |
61 | ″ | ″ | structure |
62 | ″ | ″ | use |
63 | ″ | ″ | varied spatial frequency |
64 | ″ | ″ | vector analysis method |
65 | ″ | ″ | waves |
66 | ″ | ″ | wedge |
67 | ″ | ″ | Δλ |
68 | ″ | schema:name | Formation of variable-spatial frequency interference patterns with the use of birefringent crystal prisms for laser Fourier spectroscopy |
69 | ″ | schema:pagination | 181-197 |
70 | ″ | schema:productId | N6e18968b06184c0387fa07cd6da437ed |
71 | ″ | ″ | N8050a907d20e46aa859d9cf31b61bbd5 |
72 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1037044183 |
73 | ″ | ″ | https://doi.org/10.3103/s875669901002010x |
74 | ″ | schema:sdDatePublished | 2022-05-20T07:26 |
75 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
76 | ″ | schema:sdPublisher | N3fffb0c3c4d8470fab084361c7d64be4 |
77 | ″ | schema:url | https://doi.org/10.3103/s875669901002010x |
78 | ″ | sgo:license | sg:explorer/license/ |
79 | ″ | sgo:sdDataset | articles |
80 | ″ | rdf:type | schema:ScholarlyArticle |
81 | N1107a40a22384c959fcf1bcfd8eaffa9 | schema:volumeNumber | 46 |
82 | ″ | rdf:type | schema:PublicationVolume |
83 | N2a7ab3bcba854edea24ade80455d9429 | schema:issueNumber | 2 |
84 | ″ | rdf:type | schema:PublicationIssue |
85 | N3fffb0c3c4d8470fab084361c7d64be4 | schema:name | Springer Nature - SN SciGraph project |
86 | ″ | rdf:type | schema:Organization |
87 | N5651e377a81d41bd82cdd465a87e2d6d | rdf:first | sg:person.010067123645.23 |
88 | ″ | rdf:rest | rdf:nil |
89 | N6e18968b06184c0387fa07cd6da437ed | schema:name | doi |
90 | ″ | schema:value | 10.3103/s875669901002010x |
91 | ″ | rdf:type | schema:PropertyValue |
92 | N72a86338188c4b12affa5c79de037ebe | rdf:first | sg:person.016036364753.59 |
93 | ″ | rdf:rest | N5651e377a81d41bd82cdd465a87e2d6d |
94 | N8050a907d20e46aa859d9cf31b61bbd5 | schema:name | dimensions_id |
95 | ″ | schema:value | pub.1037044183 |
96 | ″ | rdf:type | schema:PropertyValue |
97 | Nabda3b6326524e8a8983fb3398c5aecd | rdf:first | sg:person.014443423753.80 |
98 | ″ | rdf:rest | N72a86338188c4b12affa5c79de037ebe |
99 | Nbd484c26e19a4c5b947de0503cc18965 | rdf:first | sg:person.011737110415.43 |
100 | ″ | rdf:rest | Nabda3b6326524e8a8983fb3398c5aecd |
101 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
102 | ″ | schema:name | Physical Sciences |
103 | ″ | rdf:type | schema:DefinedTerm |
104 | anzsrc-for:0299 | schema:inDefinedTermSet | anzsrc-for: |
105 | ″ | schema:name | Other Physical Sciences |
106 | ″ | rdf:type | schema:DefinedTerm |
107 | sg:journal.1136502 | schema:issn | 1934-7944 |
108 | ″ | ″ | 8756-6990 |
109 | ″ | schema:name | Optoelectronics, Instrumentation and Data Processing |
110 | ″ | schema:publisher | Allerton Press |
111 | ″ | rdf:type | schema:Periodical |
112 | sg:person.010067123645.23 | schema:affiliation | grid-institutes:grid.9905.5 |
113 | ″ | schema:familyName | Buznikov |
114 | ″ | schema:givenName | A. A. |
115 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010067123645.23 |
116 | ″ | rdf:type | schema:Person |
117 | sg:person.011737110415.43 | schema:affiliation | grid-institutes:grid.423485.c |
118 | ″ | schema:familyName | Osipov |
119 | ″ | schema:givenName | V. Yu. |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011737110415.43 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.014443423753.80 | schema:affiliation | grid-institutes:grid.9905.5 |
123 | ″ | schema:familyName | Osipov |
124 | ″ | schema:givenName | Yu. V. |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014443423753.80 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.016036364753.59 | schema:affiliation | grid-institutes:grid.9905.5 |
128 | ″ | schema:familyName | Popov |
129 | ″ | schema:givenName | V. N. |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016036364753.59 |
131 | ″ | rdf:type | schema:Person |
132 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Physical Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia |
133 | ″ | schema:name | Ioffe Physical Technical Institute, Russian Academy of Sciences, ul. Politekhnicheskaya 26, 194021, St. Petersburg, Russia |
134 | ″ | ″ | Ul’yanov (Lenin) Saint Petersburg State Electrotechnical University “LETI,”, ul. Prof. Popova 5, 197376, St. Petersburg, Russia |
135 | ″ | rdf:type | schema:Organization |
136 | grid-institutes:grid.9905.5 | schema:alternateName | Ul’yanov (Lenin) Saint Petersburg State Electrotechnical University “LETI,”, ul. Prof. Popova 5, 197376, St. Petersburg, Russia |
137 | ″ | schema:name | Ul’yanov (Lenin) Saint Petersburg State Electrotechnical University “LETI,”, ul. Prof. Popova 5, 197376, St. Petersburg, Russia |
138 | ″ | rdf:type | schema:Organization |