Characteristics of Protein Aggregation and Flotation in Water and Alcohol-Water Mixture View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-04

AUTHORS

N. F. Bunkin, A. V. Shkirin, N. V. Penkov, S. N. Chirikov, L. L. Chaikov, P. S. Ignatiev, V. A. Kozlov, R. M. Sarimov

ABSTRACT

Investigation of immunoglobulin (IgG) solutions with the concentration of 0.125 mg/mL shows that monomer IgG macromolecules ~10 nm in size form aggregates as large as ~300 nm in water and ~900 nm in the 36.7 vol % ethanol–water mixture (EWM). Shaking results in formation of floating-up bubbles in the solutions of both types. However, efficiency of immunoglobulin bubble flotation in water and EWM is substantially different. This difference can be caused by simultaneous action of two mechanisms for attachment of IgG particles (macromolecules or aggregates) to bubbles in aqueous solutions: direct attraction of IgG particles to the charged surface of a bubble and existence of ion-stabilized nanobubbles with a radius of ~100 nm capable of making up compound particles like nanobubbles–IgG macromolecules/IgG aggregates, which in turn serve as “spatial agents” for flotation of IgG particles on larger bubbles. In the EWM, attachment of IgG particles to floating-up bubbles is ineffective because of weak surface charge of macro- and microbubbles and absence of nanobubbles. More... »

PAGES

145-149

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1541308x20020043

DOI

http://dx.doi.org/10.3103/s1541308x20020043

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1130022287


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.424964.9", 
          "name": [
            "Bauman State Technical University, 105005, Moscow, Russia", 
            "Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bunkin", 
        "givenName": "N. F.", 
        "id": "sg:person.01177101510.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177101510.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia", 
            "National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shkirin", 
        "givenName": "A. V.", 
        "id": "sg:person.01361443310.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361443310.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Cell Biophysics, Federal Research Center \u201cPushchino Scientific Center for Biological Research\u201d, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Cell Biophysics, Federal Research Center \u201cPushchino Scientific Center for Biological Research\u201d, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Penkov", 
        "givenName": "N. V.", 
        "id": "sg:person.01157235541.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157235541.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chirikov", 
        "givenName": "S. N.", 
        "id": "sg:person.013642442227.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013642442227.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaikov", 
        "givenName": "L. L.", 
        "id": "sg:person.01126010455.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126010455.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Production Association \u201cYalamov Ural Optical and Mechanical Plant\u201d, 620100, Ekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Production Association \u201cYalamov Ural Optical and Mechanical Plant\u201d, 620100, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ignatiev", 
        "givenName": "P. S.", 
        "id": "sg:person.0602560267.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602560267.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.424964.9", 
          "name": [
            "Bauman State Technical University, 105005, Moscow, Russia", 
            "Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kozlov", 
        "givenName": "V. A.", 
        "id": "sg:person.015215400121.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015215400121.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.424964.9", 
          "name": [
            "Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sarimov", 
        "givenName": "R. M.", 
        "id": "sg:person.01243162546.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243162546.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3103/s1541308x18010041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101676997", 
          "https://doi.org/10.3103/s1541308x18010041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10238-018-0523-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106156607", 
          "https://doi.org/10.1007/s10238-018-0523-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1541308x19020043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1115928980", 
          "https://doi.org/10.3103/s1541308x19020043"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-04", 
    "datePublishedReg": "2020-04-01", 
    "description": "Investigation of immunoglobulin (IgG) solutions with the concentration of 0.125 mg/mL shows that monomer IgG macromolecules ~10 nm in size form aggregates as large as ~300 nm in water and ~900 nm in the 36.7 vol % ethanol\u2013water mixture (EWM). Shaking results in formation of floating-up bubbles in the solutions of both types. However, efficiency of immunoglobulin bubble flotation in water and EWM is substantially different. This difference can be caused by simultaneous action of two mechanisms for attachment of IgG particles (macromolecules or aggregates) to bubbles in aqueous solutions: direct attraction of IgG particles to the charged surface of a bubble and existence of ion-stabilized nanobubbles with a radius of ~100 nm capable of making up compound particles like nanobubbles\u2013IgG macromolecules/IgG aggregates, which in turn serve as \u201cspatial agents\u201d for flotation of IgG particles on larger bubbles. In the EWM, attachment of IgG particles to floating-up bubbles is ineffective because of weak surface charge of macro- and microbubbles and absence of nanobubbles.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s1541308x20020043", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136767", 
        "issn": [
          "1541-308X", 
          "1934-807X"
        ], 
        "name": "Physics of Wave Phenomena", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "keywords": [
      "ethanol-water mixtures", 
      "IgG particles", 
      "weak surface charge", 
      "absence of nanobubbles", 
      "alcohol-water mixtures", 
      "aqueous solution", 
      "attachment of IgG", 
      "surface charge", 
      "form aggregates", 
      "nanobubbles", 
      "flotation", 
      "protein aggregation", 
      "bubble flotation", 
      "water", 
      "compound particles", 
      "mixture", 
      "particles", 
      "solution", 
      "aggregates", 
      "macromolecules", 
      "direct attraction", 
      "large bubbles", 
      "bubbles", 
      "attachment", 
      "charge", 
      "surface", 
      "aggregation", 
      "immunoglobulin solution", 
      "simultaneous action", 
      "formation", 
      "attraction", 
      "concentration", 
      "vol", 
      "agents", 
      "microbubbles", 
      "efficiency", 
      "mL", 
      "IgG aggregates", 
      "investigation", 
      "mechanism", 
      "radius", 
      "characteristics", 
      "absence", 
      "macro", 
      "types", 
      "turn", 
      "results", 
      "existence", 
      "spatial agents", 
      "action", 
      "IgG", 
      "differences"
    ], 
    "name": "Characteristics of Protein Aggregation and Flotation in Water and Alcohol-Water Mixture", 
    "pagination": "145-149", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1130022287"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1541308x20020043"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1541308x20020043", 
      "https://app.dimensions.ai/details/publication/pub.1130022287"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_837.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s1541308x20020043"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1541308x20020043'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1541308x20020043'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1541308x20020043'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1541308x20020043'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      22 PREDICATES      81 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1541308x20020043 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nd353d748a0c145d197d5347b6f4e1ce0
4 schema:citation sg:pub.10.1007/s10238-018-0523-4
5 sg:pub.10.3103/s1541308x18010041
6 sg:pub.10.3103/s1541308x19020043
7 schema:datePublished 2020-04
8 schema:datePublishedReg 2020-04-01
9 schema:description Investigation of immunoglobulin (IgG) solutions with the concentration of 0.125 mg/mL shows that monomer IgG macromolecules ~10 nm in size form aggregates as large as ~300 nm in water and ~900 nm in the 36.7 vol % ethanol–water mixture (EWM). Shaking results in formation of floating-up bubbles in the solutions of both types. However, efficiency of immunoglobulin bubble flotation in water and EWM is substantially different. This difference can be caused by simultaneous action of two mechanisms for attachment of IgG particles (macromolecules or aggregates) to bubbles in aqueous solutions: direct attraction of IgG particles to the charged surface of a bubble and existence of ion-stabilized nanobubbles with a radius of ~100 nm capable of making up compound particles like nanobubbles–IgG macromolecules/IgG aggregates, which in turn serve as “spatial agents” for flotation of IgG particles on larger bubbles. In the EWM, attachment of IgG particles to floating-up bubbles is ineffective because of weak surface charge of macro- and microbubbles and absence of nanobubbles.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N09d999e408de4f6985c1edecc4596c2e
14 Neb39510b7a05495a8ce14518581c59af
15 sg:journal.1136767
16 schema:keywords IgG
17 IgG aggregates
18 IgG particles
19 absence
20 absence of nanobubbles
21 action
22 agents
23 aggregates
24 aggregation
25 alcohol-water mixtures
26 aqueous solution
27 attachment
28 attachment of IgG
29 attraction
30 bubble flotation
31 bubbles
32 characteristics
33 charge
34 compound particles
35 concentration
36 differences
37 direct attraction
38 efficiency
39 ethanol-water mixtures
40 existence
41 flotation
42 form aggregates
43 formation
44 immunoglobulin solution
45 investigation
46 large bubbles
47 mL
48 macro
49 macromolecules
50 mechanism
51 microbubbles
52 mixture
53 nanobubbles
54 particles
55 protein aggregation
56 radius
57 results
58 simultaneous action
59 solution
60 spatial agents
61 surface
62 surface charge
63 turn
64 types
65 vol
66 water
67 weak surface charge
68 schema:name Characteristics of Protein Aggregation and Flotation in Water and Alcohol-Water Mixture
69 schema:pagination 145-149
70 schema:productId N49c6212b03f34b9a97d24c149989705f
71 N79dffd6b48a047658f9ae57a1a19e4dc
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130022287
73 https://doi.org/10.3103/s1541308x20020043
74 schema:sdDatePublished 2022-05-20T07:36
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N502d3b56f36a49c09ac9f60255505ff8
77 schema:url https://doi.org/10.3103/s1541308x20020043
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N09d999e408de4f6985c1edecc4596c2e schema:volumeNumber 28
82 rdf:type schema:PublicationVolume
83 N0c958867552742ac897be6774af1a762 rdf:first sg:person.0602560267.63
84 rdf:rest N6ee02a17eefb4da2a56edc5a71440181
85 N1a9dad10db2a4c7cb54d4704c6798b33 rdf:first sg:person.01157235541.46
86 rdf:rest Nbb7b105f81e74fb587b3184772465f54
87 N49c6212b03f34b9a97d24c149989705f schema:name doi
88 schema:value 10.3103/s1541308x20020043
89 rdf:type schema:PropertyValue
90 N502d3b56f36a49c09ac9f60255505ff8 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 N6ee02a17eefb4da2a56edc5a71440181 rdf:first sg:person.015215400121.58
93 rdf:rest N897165a50eb648629ed39f7001686f98
94 N79dffd6b48a047658f9ae57a1a19e4dc schema:name dimensions_id
95 schema:value pub.1130022287
96 rdf:type schema:PropertyValue
97 N897165a50eb648629ed39f7001686f98 rdf:first sg:person.01243162546.45
98 rdf:rest rdf:nil
99 Nbb7b105f81e74fb587b3184772465f54 rdf:first sg:person.013642442227.47
100 rdf:rest Ncb25565207a4483b910fc9805bed7f99
101 Ncb25565207a4483b910fc9805bed7f99 rdf:first sg:person.01126010455.60
102 rdf:rest N0c958867552742ac897be6774af1a762
103 Nd353d748a0c145d197d5347b6f4e1ce0 rdf:first sg:person.01177101510.48
104 rdf:rest Nfea058e136a84dbfb3f532d3c4d65ce6
105 Neb39510b7a05495a8ce14518581c59af schema:issueNumber 2
106 rdf:type schema:PublicationIssue
107 Nfea058e136a84dbfb3f532d3c4d65ce6 rdf:first sg:person.01361443310.40
108 rdf:rest N1a9dad10db2a4c7cb54d4704c6798b33
109 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
110 schema:name Chemical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
113 schema:name Physical Chemistry (incl. Structural)
114 rdf:type schema:DefinedTerm
115 sg:journal.1136767 schema:issn 1541-308X
116 1934-807X
117 schema:name Physics of Wave Phenomena
118 schema:publisher Allerton Press
119 rdf:type schema:Periodical
120 sg:person.01126010455.60 schema:affiliation grid-institutes:grid.425806.d
121 schema:familyName Chaikov
122 schema:givenName L. L.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126010455.60
124 rdf:type schema:Person
125 sg:person.01157235541.46 schema:affiliation grid-institutes:None
126 schema:familyName Penkov
127 schema:givenName N. V.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157235541.46
129 rdf:type schema:Person
130 sg:person.01177101510.48 schema:affiliation grid-institutes:grid.424964.9
131 schema:familyName Bunkin
132 schema:givenName N. F.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01177101510.48
134 rdf:type schema:Person
135 sg:person.01243162546.45 schema:affiliation grid-institutes:grid.424964.9
136 schema:familyName Sarimov
137 schema:givenName R. M.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243162546.45
139 rdf:type schema:Person
140 sg:person.01361443310.40 schema:affiliation grid-institutes:grid.183446.c
141 schema:familyName Shkirin
142 schema:givenName A. V.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361443310.40
144 rdf:type schema:Person
145 sg:person.013642442227.47 schema:affiliation grid-institutes:grid.183446.c
146 schema:familyName Chirikov
147 schema:givenName S. N.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013642442227.47
149 rdf:type schema:Person
150 sg:person.015215400121.58 schema:affiliation grid-institutes:grid.424964.9
151 schema:familyName Kozlov
152 schema:givenName V. A.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015215400121.58
154 rdf:type schema:Person
155 sg:person.0602560267.63 schema:affiliation grid-institutes:None
156 schema:familyName Ignatiev
157 schema:givenName P. S.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0602560267.63
159 rdf:type schema:Person
160 sg:pub.10.1007/s10238-018-0523-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106156607
161 https://doi.org/10.1007/s10238-018-0523-4
162 rdf:type schema:CreativeWork
163 sg:pub.10.3103/s1541308x18010041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101676997
164 https://doi.org/10.3103/s1541308x18010041
165 rdf:type schema:CreativeWork
166 sg:pub.10.3103/s1541308x19020043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115928980
167 https://doi.org/10.3103/s1541308x19020043
168 rdf:type schema:CreativeWork
169 grid-institutes:None schema:alternateName Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research”, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
170 Production Association “Yalamov Ural Optical and Mechanical Plant”, 620100, Ekaterinburg, Russia
171 schema:name Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center for Biological Research”, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
172 Production Association “Yalamov Ural Optical and Mechanical Plant”, 620100, Ekaterinburg, Russia
173 rdf:type schema:Organization
174 grid-institutes:grid.183446.c schema:alternateName National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia
175 schema:name National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow, Russia
176 Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
177 rdf:type schema:Organization
178 grid-institutes:grid.424964.9 schema:alternateName Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
179 schema:name Bauman State Technical University, 105005, Moscow, Russia
180 Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991, Moscow, Russia
181 rdf:type schema:Organization
182 grid-institutes:grid.425806.d schema:alternateName Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
183 schema:name Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia
184 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...