Observed and calculated variability of the particulate matter concentration in Moscow and in Zelenograd View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

I. N. Kuznetsova, I. B. Konovalov, A. A. Glazkova, M. I. Nakhaev, R. B. Zaripov, E. A. Lezina, A. M. Zvyagintsev, M. Beekmann

ABSTRACT

The results of a comparative analysis of temporal and spatial variations in the particulate matter (PM10) concentration are under consideration; the information is obtained based on the measurement data from the Mosekomonitoring network of stations and results of calculations with the CHIMERE chemistry transport model adapted for the Russian central region. The intercomparison of measurement data obtained in summer 2007 and respective calculations showed that the model provided a satisfactory reproduction of the observed temporal variability of the daily mean PM10 concentration (an averaged correlation coefficient is 0.8), but systematically underestimated the absolute values of the PM10 concentration. It is shown that model data quality can be significantly improved due to a simple a priori correction of the model errors. Irregularities in the spatial distribution of the PM10 concentration and their dependence on meteorological conditions were revealed. The reasons of the formation of episodes of a high PM10 concentration are considered. More... »

PAGES

175-184

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1068373911030046

DOI

http://dx.doi.org/10.3103/s1068373911030046

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1070974316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hydrometeorological Research Centre of Russian Federation", 
          "id": "https://www.grid.ac/institutes/grid.465482.9", 
          "name": [
            "Hydrometeorological Research Center of the Russian Federation, Bolshoi Predtechenskii per. 9-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsova", 
        "givenName": "I. N.", 
        "id": "sg:person.015455205355.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455205355.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics", 
          "id": "https://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, Russian Academy of Sciences, ul. Ulnova 46, 603950, Nizhni Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konovalov", 
        "givenName": "I. B.", 
        "id": "sg:person.07374072646.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374072646.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hydrometeorological Research Centre of Russian Federation", 
          "id": "https://www.grid.ac/institutes/grid.465482.9", 
          "name": [
            "Hydrometeorological Research Center of the Russian Federation, Bolshoi Predtechenskii per. 9-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glazkova", 
        "givenName": "A. A.", 
        "id": "sg:person.016405671352.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405671352.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hydrometeorological Research Centre of Russian Federation", 
          "id": "https://www.grid.ac/institutes/grid.465482.9", 
          "name": [
            "Hydrometeorological Research Center of the Russian Federation, Bolshoi Predtechenskii per. 9-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakhaev", 
        "givenName": "M. I.", 
        "id": "sg:person.016102764163.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102764163.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hydrometeorological Research Centre of Russian Federation", 
          "id": "https://www.grid.ac/institutes/grid.465482.9", 
          "name": [
            "Hydrometeorological Research Center of the Russian Federation, Bolshoi Predtechenskii per. 9-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaripov", 
        "givenName": "R. B.", 
        "id": "sg:person.07750161141.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750161141.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mosekomonitoring State Nature Protection Organization, ul. Novyi Arbat 11, str. 1, 121019, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lezina", 
        "givenName": "E. A.", 
        "id": "sg:person.01302645160.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302645160.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Roshydromet", 
          "id": "https://www.grid.ac/institutes/grid.433404.4", 
          "name": [
            "Central Aerological Observatory, Pervomaiskaya ul. 3, 141700, Dolgoprudny, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zvyagintsev", 
        "givenName": "A. M.", 
        "id": "sg:person.07503617640.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503617640.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Interuniversitaire des Syst\u00e8mes Atmosph\u00e9riques", 
          "id": "https://www.grid.ac/institutes/grid.464159.b", 
          "name": [
            "Inter-University Laboratory of Atmospheric Systems, av. G\u00e9n\u00e9ral de Gaulle 61, 94010, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beekmann", 
        "givenName": "M.", 
        "id": "sg:person.010045072003.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045072003.34"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "The results of a comparative analysis of temporal and spatial variations in the particulate matter (PM10) concentration are under consideration; the information is obtained based on the measurement data from the Mosekomonitoring network of stations and results of calculations with the CHIMERE chemistry transport model adapted for the Russian central region. The intercomparison of measurement data obtained in summer 2007 and respective calculations showed that the model provided a satisfactory reproduction of the observed temporal variability of the daily mean PM10 concentration (an averaged correlation coefficient is 0.8), but systematically underestimated the absolute values of the PM10 concentration. It is shown that model data quality can be significantly improved due to a simple a priori correction of the model errors. Irregularities in the spatial distribution of the PM10 concentration and their dependence on meteorological conditions were revealed. The reasons of the formation of episodes of a high PM10 concentration are considered.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s1068373911030046", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136194", 
        "issn": [
          "1068-3739", 
          "0130-2906"
        ], 
        "name": "Russian Meteorology and Hydrology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Observed and calculated variability of the particulate matter concentration in Moscow and in Zelenograd", 
    "pagination": "175-184", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a8dbd6fc22fda73792402d76dc415eb2e85e82211bc37483b1c43e9fc7a5ca1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1068373911030046"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1070974316"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1068373911030046", 
      "https://app.dimensions.ai/details/publication/pub.1070974316"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3103%2FS1068373911030046"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068373911030046'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068373911030046'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068373911030046'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068373911030046'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1068373911030046 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author Nb8a660e68e134c29bc3cfff4a316db5b
4 schema:datePublished 2011-03
5 schema:datePublishedReg 2011-03-01
6 schema:description The results of a comparative analysis of temporal and spatial variations in the particulate matter (PM10) concentration are under consideration; the information is obtained based on the measurement data from the Mosekomonitoring network of stations and results of calculations with the CHIMERE chemistry transport model adapted for the Russian central region. The intercomparison of measurement data obtained in summer 2007 and respective calculations showed that the model provided a satisfactory reproduction of the observed temporal variability of the daily mean PM10 concentration (an averaged correlation coefficient is 0.8), but systematically underestimated the absolute values of the PM10 concentration. It is shown that model data quality can be significantly improved due to a simple a priori correction of the model errors. Irregularities in the spatial distribution of the PM10 concentration and their dependence on meteorological conditions were revealed. The reasons of the formation of episodes of a high PM10 concentration are considered.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N3103ea9ca0464f09a59cd8debdc1a4c6
11 Ne635ffbbfd5f4bea8ff96ae7c168758c
12 sg:journal.1136194
13 schema:name Observed and calculated variability of the particulate matter concentration in Moscow and in Zelenograd
14 schema:pagination 175-184
15 schema:productId N28b42d93dbe44b7bb02d397198055d1b
16 N76c9232f7ecb44acb11f74c73b635436
17 Nd0079e8990ad4a868428a4cd44f722e8
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070974316
19 https://doi.org/10.3103/s1068373911030046
20 schema:sdDatePublished 2019-04-10T23:23
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Na29b5d6cc01545299e604d11462832ac
23 schema:url http://link.springer.com/10.3103%2FS1068373911030046
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0119c7dfc23d461a869383137830818c rdf:first sg:person.07503617640.61
28 rdf:rest N499326e7754e4bd09eedfbe2348a31d9
29 N141134831fc04331ba9ed0eb03bd1f29 rdf:first sg:person.07374072646.64
30 rdf:rest N2da96785d99f4b73a831ea247ee0448e
31 N28b42d93dbe44b7bb02d397198055d1b schema:name dimensions_id
32 schema:value pub.1070974316
33 rdf:type schema:PropertyValue
34 N2da96785d99f4b73a831ea247ee0448e rdf:first sg:person.016405671352.19
35 rdf:rest Nfbe7c15588174577a444b134f80ca6d0
36 N3103ea9ca0464f09a59cd8debdc1a4c6 schema:volumeNumber 36
37 rdf:type schema:PublicationVolume
38 N499326e7754e4bd09eedfbe2348a31d9 rdf:first sg:person.010045072003.34
39 rdf:rest rdf:nil
40 N4e05c38ddfec4e35b6cf3d7ecfd5174f schema:name Mosekomonitoring State Nature Protection Organization, ul. Novyi Arbat 11, str. 1, 121019, Moscow, Russia
41 rdf:type schema:Organization
42 N76c9232f7ecb44acb11f74c73b635436 schema:name readcube_id
43 schema:value 1a8dbd6fc22fda73792402d76dc415eb2e85e82211bc37483b1c43e9fc7a5ca1
44 rdf:type schema:PropertyValue
45 Na29b5d6cc01545299e604d11462832ac schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Nb8a660e68e134c29bc3cfff4a316db5b rdf:first sg:person.015455205355.88
48 rdf:rest N141134831fc04331ba9ed0eb03bd1f29
49 Nd0079e8990ad4a868428a4cd44f722e8 schema:name doi
50 schema:value 10.3103/s1068373911030046
51 rdf:type schema:PropertyValue
52 Nd18ef80b317649058cba2953bf31e0e1 rdf:first sg:person.01302645160.47
53 rdf:rest N0119c7dfc23d461a869383137830818c
54 Ne41ea8662fe0409383d7a6363af8a96a rdf:first sg:person.07750161141.11
55 rdf:rest Nd18ef80b317649058cba2953bf31e0e1
56 Ne635ffbbfd5f4bea8ff96ae7c168758c schema:issueNumber 3
57 rdf:type schema:PublicationIssue
58 Nfbe7c15588174577a444b134f80ca6d0 rdf:first sg:person.016102764163.19
59 rdf:rest Ne41ea8662fe0409383d7a6363af8a96a
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information Systems
65 rdf:type schema:DefinedTerm
66 sg:journal.1136194 schema:issn 0130-2906
67 1068-3739
68 schema:name Russian Meteorology and Hydrology
69 rdf:type schema:Periodical
70 sg:person.010045072003.34 schema:affiliation https://www.grid.ac/institutes/grid.464159.b
71 schema:familyName Beekmann
72 schema:givenName M.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045072003.34
74 rdf:type schema:Person
75 sg:person.01302645160.47 schema:affiliation N4e05c38ddfec4e35b6cf3d7ecfd5174f
76 schema:familyName Lezina
77 schema:givenName E. A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302645160.47
79 rdf:type schema:Person
80 sg:person.015455205355.88 schema:affiliation https://www.grid.ac/institutes/grid.465482.9
81 schema:familyName Kuznetsova
82 schema:givenName I. N.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455205355.88
84 rdf:type schema:Person
85 sg:person.016102764163.19 schema:affiliation https://www.grid.ac/institutes/grid.465482.9
86 schema:familyName Nakhaev
87 schema:givenName M. I.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102764163.19
89 rdf:type schema:Person
90 sg:person.016405671352.19 schema:affiliation https://www.grid.ac/institutes/grid.465482.9
91 schema:familyName Glazkova
92 schema:givenName A. A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405671352.19
94 rdf:type schema:Person
95 sg:person.07374072646.64 schema:affiliation https://www.grid.ac/institutes/grid.410472.4
96 schema:familyName Konovalov
97 schema:givenName I. B.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374072646.64
99 rdf:type schema:Person
100 sg:person.07503617640.61 schema:affiliation https://www.grid.ac/institutes/grid.433404.4
101 schema:familyName Zvyagintsev
102 schema:givenName A. M.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503617640.61
104 rdf:type schema:Person
105 sg:person.07750161141.11 schema:affiliation https://www.grid.ac/institutes/grid.465482.9
106 schema:familyName Zaripov
107 schema:givenName R. B.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750161141.11
109 rdf:type schema:Person
110 https://www.grid.ac/institutes/grid.410472.4 schema:alternateName Institute of Applied Physics
111 schema:name Institute of Applied Physics, Russian Academy of Sciences, ul. Ulnova 46, 603950, Nizhni Novgorod, Russia
112 rdf:type schema:Organization
113 https://www.grid.ac/institutes/grid.433404.4 schema:alternateName Roshydromet
114 schema:name Central Aerological Observatory, Pervomaiskaya ul. 3, 141700, Dolgoprudny, Moscow oblast, Russia
115 rdf:type schema:Organization
116 https://www.grid.ac/institutes/grid.464159.b schema:alternateName Laboratoire Interuniversitaire des Systèmes Atmosphériques
117 schema:name Inter-University Laboratory of Atmospheric Systems, av. Général de Gaulle 61, 94010, Paris, France
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.465482.9 schema:alternateName Hydrometeorological Research Centre of Russian Federation
120 schema:name Hydrometeorological Research Center of the Russian Federation, Bolshoi Predtechenskii per. 9-13, 123242, Moscow, Russia
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...