Observed and calculated variability of the particulate matter concentration in Moscow and in Zelenograd View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

I. N. Kuznetsova, I. B. Konovalov, A. A. Glazkova, M. I. Nakhaev, R. B. Zaripov, E. A. Lezina, A. M. Zvyagintsev, M. Beekmann

ABSTRACT

The results of a comparative analysis of temporal and spatial variations in the particulate matter (PM10) concentration are under consideration; the information is obtained based on the measurement data from the Mosekomonitoring network of stations and results of calculations with the CHIMERE chemistry transport model adapted for the Russian central region. The intercomparison of measurement data obtained in summer 2007 and respective calculations showed that the model provided a satisfactory reproduction of the observed temporal variability of the daily mean PM10 concentration (an averaged correlation coefficient is 0.8), but systematically underestimated the absolute values of the PM10 concentration. It is shown that model data quality can be significantly improved due to a simple a priori correction of the model errors. Irregularities in the spatial distribution of the PM10 concentration and their dependence on meteorological conditions were revealed. The reasons of the formation of episodes of a high PM10 concentration are considered. More... »

PAGES

175-184

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1068373911030046

DOI

http://dx.doi.org/10.3103/s1068373911030046

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1070974316


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hydrometeorological Research Centre of Russian Federation", 
          "id": "https://www.grid.ac/institutes/grid.465482.9", 
          "name": [
            "Hydrometeorological Research Center of the Russian Federation, Bolshoi Predtechenskii per. 9-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsova", 
        "givenName": "I. N.", 
        "id": "sg:person.015455205355.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455205355.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics", 
          "id": "https://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, Russian Academy of Sciences, ul. Ulnova 46, 603950, Nizhni Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konovalov", 
        "givenName": "I. B.", 
        "id": "sg:person.07374072646.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374072646.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hydrometeorological Research Centre of Russian Federation", 
          "id": "https://www.grid.ac/institutes/grid.465482.9", 
          "name": [
            "Hydrometeorological Research Center of the Russian Federation, Bolshoi Predtechenskii per. 9-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glazkova", 
        "givenName": "A. A.", 
        "id": "sg:person.016405671352.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405671352.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hydrometeorological Research Centre of Russian Federation", 
          "id": "https://www.grid.ac/institutes/grid.465482.9", 
          "name": [
            "Hydrometeorological Research Center of the Russian Federation, Bolshoi Predtechenskii per. 9-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakhaev", 
        "givenName": "M. I.", 
        "id": "sg:person.016102764163.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102764163.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hydrometeorological Research Centre of Russian Federation", 
          "id": "https://www.grid.ac/institutes/grid.465482.9", 
          "name": [
            "Hydrometeorological Research Center of the Russian Federation, Bolshoi Predtechenskii per. 9-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaripov", 
        "givenName": "R. B.", 
        "id": "sg:person.07750161141.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750161141.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Mosekomonitoring State Nature Protection Organization, ul. Novyi Arbat 11, str. 1, 121019, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lezina", 
        "givenName": "E. A.", 
        "id": "sg:person.01302645160.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302645160.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Roshydromet", 
          "id": "https://www.grid.ac/institutes/grid.433404.4", 
          "name": [
            "Central Aerological Observatory, Pervomaiskaya ul. 3, 141700, Dolgoprudny, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zvyagintsev", 
        "givenName": "A. M.", 
        "id": "sg:person.07503617640.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503617640.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Interuniversitaire des Syst\u00e8mes Atmosph\u00e9riques", 
          "id": "https://www.grid.ac/institutes/grid.464159.b", 
          "name": [
            "Inter-University Laboratory of Atmospheric Systems, av. G\u00e9n\u00e9ral de Gaulle 61, 94010, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beekmann", 
        "givenName": "M.", 
        "id": "sg:person.010045072003.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045072003.34"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "The results of a comparative analysis of temporal and spatial variations in the particulate matter (PM10) concentration are under consideration; the information is obtained based on the measurement data from the Mosekomonitoring network of stations and results of calculations with the CHIMERE chemistry transport model adapted for the Russian central region. The intercomparison of measurement data obtained in summer 2007 and respective calculations showed that the model provided a satisfactory reproduction of the observed temporal variability of the daily mean PM10 concentration (an averaged correlation coefficient is 0.8), but systematically underestimated the absolute values of the PM10 concentration. It is shown that model data quality can be significantly improved due to a simple a priori correction of the model errors. Irregularities in the spatial distribution of the PM10 concentration and their dependence on meteorological conditions were revealed. The reasons of the formation of episodes of a high PM10 concentration are considered.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s1068373911030046", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136194", 
        "issn": [
          "1068-3739", 
          "0130-2906"
        ], 
        "name": "Russian Meteorology and Hydrology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Observed and calculated variability of the particulate matter concentration in Moscow and in Zelenograd", 
    "pagination": "175-184", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1a8dbd6fc22fda73792402d76dc415eb2e85e82211bc37483b1c43e9fc7a5ca1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1068373911030046"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1070974316"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1068373911030046", 
      "https://app.dimensions.ai/details/publication/pub.1070974316"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000508.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3103%2FS1068373911030046"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068373911030046'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068373911030046'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068373911030046'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068373911030046'


 

This table displays all metadata directly associated to this object as RDF triples.

121 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1068373911030046 schema:about anzsrc-for:08
2 anzsrc-for:0806
3 schema:author N3dbddf054cd84f509739009f2543dd1a
4 schema:datePublished 2011-03
5 schema:datePublishedReg 2011-03-01
6 schema:description The results of a comparative analysis of temporal and spatial variations in the particulate matter (PM10) concentration are under consideration; the information is obtained based on the measurement data from the Mosekomonitoring network of stations and results of calculations with the CHIMERE chemistry transport model adapted for the Russian central region. The intercomparison of measurement data obtained in summer 2007 and respective calculations showed that the model provided a satisfactory reproduction of the observed temporal variability of the daily mean PM10 concentration (an averaged correlation coefficient is 0.8), but systematically underestimated the absolute values of the PM10 concentration. It is shown that model data quality can be significantly improved due to a simple a priori correction of the model errors. Irregularities in the spatial distribution of the PM10 concentration and their dependence on meteorological conditions were revealed. The reasons of the formation of episodes of a high PM10 concentration are considered.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N28d65c835407455d84364a926e699826
11 Nb1f2bcbedea0458d98bebab888d2ba22
12 sg:journal.1136194
13 schema:name Observed and calculated variability of the particulate matter concentration in Moscow and in Zelenograd
14 schema:pagination 175-184
15 schema:productId N0398f3526ef244ba8623c99a187e2ad0
16 N522f3c237db64a0e91075f5f2b2b4f55
17 Nd29d201590ce4cabb34b8bdf72debe67
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070974316
19 https://doi.org/10.3103/s1068373911030046
20 schema:sdDatePublished 2019-04-10T23:23
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N254b8b83d40e4243be9e3d34a7acaf38
23 schema:url http://link.springer.com/10.3103%2FS1068373911030046
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N0398f3526ef244ba8623c99a187e2ad0 schema:name doi
28 schema:value 10.3103/s1068373911030046
29 rdf:type schema:PropertyValue
30 N173085ea593c4d93bc6bdc652cf5ee52 schema:name Mosekomonitoring State Nature Protection Organization, ul. Novyi Arbat 11, str. 1, 121019, Moscow, Russia
31 rdf:type schema:Organization
32 N254b8b83d40e4243be9e3d34a7acaf38 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N28d65c835407455d84364a926e699826 schema:volumeNumber 36
35 rdf:type schema:PublicationVolume
36 N3dbddf054cd84f509739009f2543dd1a rdf:first sg:person.015455205355.88
37 rdf:rest Ne8ade05a83fc4a39ae2cf2d6c72a7731
38 N522f3c237db64a0e91075f5f2b2b4f55 schema:name readcube_id
39 schema:value 1a8dbd6fc22fda73792402d76dc415eb2e85e82211bc37483b1c43e9fc7a5ca1
40 rdf:type schema:PropertyValue
41 N6b5363d3cec14bd9a3f3a38e6efbc816 rdf:first sg:person.010045072003.34
42 rdf:rest rdf:nil
43 N8d101a54aa3246f8a051cf17cd0bd5bf rdf:first sg:person.016405671352.19
44 rdf:rest Nc83167f7862041e1bd40e1fbc58edc72
45 N960b117c631f42a4bc68dd425cc3a69c rdf:first sg:person.07750161141.11
46 rdf:rest N99a43c2cace946a1a3c1477502332dac
47 N99a43c2cace946a1a3c1477502332dac rdf:first sg:person.01302645160.47
48 rdf:rest Ne6c9a2d02798402ebe5c9f047e2b7dc2
49 Nb1f2bcbedea0458d98bebab888d2ba22 schema:issueNumber 3
50 rdf:type schema:PublicationIssue
51 Nc83167f7862041e1bd40e1fbc58edc72 rdf:first sg:person.016102764163.19
52 rdf:rest N960b117c631f42a4bc68dd425cc3a69c
53 Nd29d201590ce4cabb34b8bdf72debe67 schema:name dimensions_id
54 schema:value pub.1070974316
55 rdf:type schema:PropertyValue
56 Ne6c9a2d02798402ebe5c9f047e2b7dc2 rdf:first sg:person.07503617640.61
57 rdf:rest N6b5363d3cec14bd9a3f3a38e6efbc816
58 Ne8ade05a83fc4a39ae2cf2d6c72a7731 rdf:first sg:person.07374072646.64
59 rdf:rest N8d101a54aa3246f8a051cf17cd0bd5bf
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
64 schema:name Information Systems
65 rdf:type schema:DefinedTerm
66 sg:journal.1136194 schema:issn 0130-2906
67 1068-3739
68 schema:name Russian Meteorology and Hydrology
69 rdf:type schema:Periodical
70 sg:person.010045072003.34 schema:affiliation https://www.grid.ac/institutes/grid.464159.b
71 schema:familyName Beekmann
72 schema:givenName M.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045072003.34
74 rdf:type schema:Person
75 sg:person.01302645160.47 schema:affiliation N173085ea593c4d93bc6bdc652cf5ee52
76 schema:familyName Lezina
77 schema:givenName E. A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302645160.47
79 rdf:type schema:Person
80 sg:person.015455205355.88 schema:affiliation https://www.grid.ac/institutes/grid.465482.9
81 schema:familyName Kuznetsova
82 schema:givenName I. N.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455205355.88
84 rdf:type schema:Person
85 sg:person.016102764163.19 schema:affiliation https://www.grid.ac/institutes/grid.465482.9
86 schema:familyName Nakhaev
87 schema:givenName M. I.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016102764163.19
89 rdf:type schema:Person
90 sg:person.016405671352.19 schema:affiliation https://www.grid.ac/institutes/grid.465482.9
91 schema:familyName Glazkova
92 schema:givenName A. A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405671352.19
94 rdf:type schema:Person
95 sg:person.07374072646.64 schema:affiliation https://www.grid.ac/institutes/grid.410472.4
96 schema:familyName Konovalov
97 schema:givenName I. B.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374072646.64
99 rdf:type schema:Person
100 sg:person.07503617640.61 schema:affiliation https://www.grid.ac/institutes/grid.433404.4
101 schema:familyName Zvyagintsev
102 schema:givenName A. M.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07503617640.61
104 rdf:type schema:Person
105 sg:person.07750161141.11 schema:affiliation https://www.grid.ac/institutes/grid.465482.9
106 schema:familyName Zaripov
107 schema:givenName R. B.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750161141.11
109 rdf:type schema:Person
110 https://www.grid.ac/institutes/grid.410472.4 schema:alternateName Institute of Applied Physics
111 schema:name Institute of Applied Physics, Russian Academy of Sciences, ul. Ulnova 46, 603950, Nizhni Novgorod, Russia
112 rdf:type schema:Organization
113 https://www.grid.ac/institutes/grid.433404.4 schema:alternateName Roshydromet
114 schema:name Central Aerological Observatory, Pervomaiskaya ul. 3, 141700, Dolgoprudny, Moscow oblast, Russia
115 rdf:type schema:Organization
116 https://www.grid.ac/institutes/grid.464159.b schema:alternateName Laboratoire Interuniversitaire des Systèmes Atmosphériques
117 schema:name Inter-University Laboratory of Atmospheric Systems, av. Général de Gaulle 61, 94010, Paris, France
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.465482.9 schema:alternateName Hydrometeorological Research Centre of Russian Federation
120 schema:name Hydrometeorological Research Center of the Russian Federation, Bolshoi Predtechenskii per. 9-13, 123242, Moscow, Russia
121 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...