Optimal Organization of Furnace Systems at Oil Refineries View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

V. A. Naletov

ABSTRACT

The system considered in the present study consists of a heating furnace and a multipass recuperative heat exchanger for air preheating. Process design ensured the coordinated operation of this system by applying a basis of a probabilistic and informational approach to the organization of industrial systems. It proves optimal to increase the thermal load on the recuperative heat exchanger and decrease the thermal load on the furnace, without changing the overall heating parameters. Exergy analysis was used to validate the proposed solution and it was shown that the total exergy loss in a system with a heating furnace and a recuperative heat exchanger decreases in for recommended operating conditions. This results in fuel economy. More... »

PAGES

34-36

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1068364x1901006x

DOI

http://dx.doi.org/10.3103/s1068364x1901006x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1114008290


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mendeleev Russian University of Chemical Technology, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.39572.3a", 
          "name": [
            "Mendeleev Russian University of Chemical Technology, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naletov", 
        "givenName": "V. A.", 
        "id": "sg:person.015576745360.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015576745360.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3103/s1068364x15070054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037593998", 
          "https://doi.org/10.3103/s1068364x15070054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0040579511050289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044456607", 
          "https://doi.org/10.1134/s0040579511050289"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "The system considered in the present study consists of a heating furnace and a multipass recuperative heat exchanger for air preheating. Process design ensured the coordinated operation of this system by applying a basis of a probabilistic and informational approach to the organization of industrial systems. It proves optimal to increase the thermal load on the recuperative heat exchanger and decrease the thermal load on the furnace, without changing the overall heating parameters. Exergy analysis was used to validate the proposed solution and it was shown that the total exergy loss in a system with a heating furnace and a recuperative heat exchanger decreases in for recommended operating conditions. This results in fuel economy.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s1068364x1901006x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136036", 
        "issn": [
          "1068-364X", 
          "1934-8398"
        ], 
        "name": "Coke and Chemistry", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "recuperative heat exchanger", 
      "heat exchanger", 
      "thermal load", 
      "heating furnace", 
      "total exergy loss", 
      "air preheating", 
      "fuel economy", 
      "operating conditions", 
      "exergy analysis", 
      "exergy loss", 
      "furnace system", 
      "heating parameters", 
      "coordinated operation", 
      "process design", 
      "furnace", 
      "oil refinery", 
      "exchanger", 
      "industrial systems", 
      "load", 
      "preheating", 
      "refinery", 
      "system", 
      "operation", 
      "design", 
      "parameters", 
      "solution", 
      "conditions", 
      "approach", 
      "loss", 
      "analysis", 
      "present study", 
      "basis", 
      "study", 
      "optimal organization", 
      "economy", 
      "informational approach", 
      "organization", 
      "multipass recuperative heat exchanger", 
      "overall heating parameters"
    ], 
    "name": "Optimal Organization of Furnace Systems at Oil Refineries", 
    "pagination": "34-36", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1114008290"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1068364x1901006x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1068364x1901006x", 
      "https://app.dimensions.ai/details/publication/pub.1114008290"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_819.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s1068364x1901006x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068364x1901006x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068364x1901006x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068364x1901006x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068364x1901006x'


 

This table displays all metadata directly associated to this object as RDF triples.

105 TRIPLES      22 PREDICATES      67 URIs      57 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1068364x1901006x schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N1ca2908e67c34225a441596a4fa26bd5
4 schema:citation sg:pub.10.1134/s0040579511050289
5 sg:pub.10.3103/s1068364x15070054
6 schema:datePublished 2019-01
7 schema:datePublishedReg 2019-01-01
8 schema:description The system considered in the present study consists of a heating furnace and a multipass recuperative heat exchanger for air preheating. Process design ensured the coordinated operation of this system by applying a basis of a probabilistic and informational approach to the organization of industrial systems. It proves optimal to increase the thermal load on the recuperative heat exchanger and decrease the thermal load on the furnace, without changing the overall heating parameters. Exergy analysis was used to validate the proposed solution and it was shown that the total exergy loss in a system with a heating furnace and a recuperative heat exchanger decreases in for recommended operating conditions. This results in fuel economy.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N60cff545790443fe9549c92826dfaf86
13 Nd44c0cb108834cc0af887e50b5d152dd
14 sg:journal.1136036
15 schema:keywords air preheating
16 analysis
17 approach
18 basis
19 conditions
20 coordinated operation
21 design
22 economy
23 exchanger
24 exergy analysis
25 exergy loss
26 fuel economy
27 furnace
28 furnace system
29 heat exchanger
30 heating furnace
31 heating parameters
32 industrial systems
33 informational approach
34 load
35 loss
36 multipass recuperative heat exchanger
37 oil refinery
38 operating conditions
39 operation
40 optimal organization
41 organization
42 overall heating parameters
43 parameters
44 preheating
45 present study
46 process design
47 recuperative heat exchanger
48 refinery
49 solution
50 study
51 system
52 thermal load
53 total exergy loss
54 schema:name Optimal Organization of Furnace Systems at Oil Refineries
55 schema:pagination 34-36
56 schema:productId Ndba863bf42534378b572298c34aa5f52
57 Ne68254615be1457aa043f1dc6ba829fb
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1114008290
59 https://doi.org/10.3103/s1068364x1901006x
60 schema:sdDatePublished 2022-01-01T18:54
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher N7fc261eb93cb4055b45460a7113104ec
63 schema:url https://doi.org/10.3103/s1068364x1901006x
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N1ca2908e67c34225a441596a4fa26bd5 rdf:first sg:person.015576745360.67
68 rdf:rest rdf:nil
69 N60cff545790443fe9549c92826dfaf86 schema:volumeNumber 62
70 rdf:type schema:PublicationVolume
71 N7fc261eb93cb4055b45460a7113104ec schema:name Springer Nature - SN SciGraph project
72 rdf:type schema:Organization
73 Nd44c0cb108834cc0af887e50b5d152dd schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 Ndba863bf42534378b572298c34aa5f52 schema:name doi
76 schema:value 10.3103/s1068364x1901006x
77 rdf:type schema:PropertyValue
78 Ne68254615be1457aa043f1dc6ba829fb schema:name dimensions_id
79 schema:value pub.1114008290
80 rdf:type schema:PropertyValue
81 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
82 schema:name Engineering
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
85 schema:name Interdisciplinary Engineering
86 rdf:type schema:DefinedTerm
87 sg:journal.1136036 schema:issn 1068-364X
88 1934-8398
89 schema:name Coke and Chemistry
90 schema:publisher Allerton Press
91 rdf:type schema:Periodical
92 sg:person.015576745360.67 schema:affiliation grid-institutes:grid.39572.3a
93 schema:familyName Naletov
94 schema:givenName V. A.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015576745360.67
96 rdf:type schema:Person
97 sg:pub.10.1134/s0040579511050289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044456607
98 https://doi.org/10.1134/s0040579511050289
99 rdf:type schema:CreativeWork
100 sg:pub.10.3103/s1068364x15070054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037593998
101 https://doi.org/10.3103/s1068364x15070054
102 rdf:type schema:CreativeWork
103 grid-institutes:grid.39572.3a schema:alternateName Mendeleev Russian University of Chemical Technology, Moscow, Russia
104 schema:name Mendeleev Russian University of Chemical Technology, Moscow, Russia
105 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...