Selecting the optimal topology for the water-gas shift process for syngas produced by lignite gasification View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

V. A. Naletov, M. B. Glebov, A. Yu. Naletov

ABSTRACT

The paper focuses on the problem of selecting the optimal topology for the water-gas shift process for the subsequent synthesis of methanol and higher alcohols. The process uses synthesis gas produced by lignite gasification. The proposed methodology employs the information approach to the creation of highly organized systems in chemical technology, so that optimization can be considered for the process of adding elements to the system step-by-step based on analysis of the organization criteria. The optimal solution is to combine gasification with two-stage high-temperature conversion on the basis of a topology in which two-stage heating precedes the first stage so as to ensure the required optimal temperatures. The optimal conversion topology is integrated with gasification to form a unified system, so as to ensure the required heating of the gasification agents. More... »

PAGES

466-470

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1068364x16120073

DOI

http://dx.doi.org/10.3103/s1068364x16120073

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084984977


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mendeleev Russian Chemical-Technology University, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.483960.0", 
          "name": [
            "Mendeleev Russian Chemical-Technology University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naletov", 
        "givenName": "V. A.", 
        "id": "sg:person.015576745360.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015576745360.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mendeleev Russian Chemical-Technology University, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.483960.0", 
          "name": [
            "Mendeleev Russian Chemical-Technology University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glebov", 
        "givenName": "M. B.", 
        "id": "sg:person.016025443041.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025443041.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Mendeleev Russian Chemical-Technology University, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.483960.0", 
          "name": [
            "Mendeleev Russian Chemical-Technology University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naletov", 
        "givenName": "A. Yu.", 
        "id": "sg:person.014507624441.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507624441.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3103/s1068364x15080062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042758458", 
          "https://doi.org/10.3103/s1068364x15080062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0040579511050289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044456607", 
          "https://doi.org/10.1134/s0040579511050289"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1068364x15070054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037593998", 
          "https://doi.org/10.3103/s1068364x15070054"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "The paper focuses on the problem of selecting the optimal topology for the water-gas shift process for the subsequent synthesis of methanol and higher alcohols. The process uses synthesis gas produced by lignite gasification. The proposed methodology employs the information approach to the creation of highly organized systems in chemical technology, so that optimization can be considered for the process of adding elements to the system step-by-step based on analysis of the organization criteria. The optimal solution is to combine gasification with two-stage high-temperature conversion on the basis of a topology in which two-stage heating precedes the first stage so as to ensure the required optimal temperatures. The optimal conversion topology is integrated with gasification to form a unified system, so as to ensure the required heating of the gasification agents.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s1068364x16120073", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136036", 
        "issn": [
          "1068-364X", 
          "1934-8398"
        ], 
        "name": "Coke and Chemistry", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "59"
      }
    ], 
    "keywords": [
      "water-gas shift process", 
      "lignite gasification", 
      "shift process", 
      "gasification agent", 
      "optimal topology", 
      "two-stage heating", 
      "gasification", 
      "high-temperature conversion", 
      "synthesis gas", 
      "conversion topology", 
      "chemical technology", 
      "heating", 
      "syngas", 
      "system step", 
      "first stage", 
      "process", 
      "gas", 
      "temperature", 
      "optimal solution", 
      "topology", 
      "optimization", 
      "system", 
      "technology", 
      "unified system", 
      "optimal temperature", 
      "step", 
      "solution", 
      "methodology", 
      "higher alcohols", 
      "conversion", 
      "elements", 
      "methanol", 
      "subsequent synthesis", 
      "problem", 
      "approach", 
      "analysis", 
      "stage", 
      "synthesis", 
      "basis", 
      "creation", 
      "criteria", 
      "alcohol", 
      "information approach", 
      "agents", 
      "paper", 
      "Organization criteria", 
      "two-stage high-temperature conversion", 
      "optimal conversion topology"
    ], 
    "name": "Selecting the optimal topology for the water-gas shift process for syngas produced by lignite gasification", 
    "pagination": "466-470", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084984977"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1068364x16120073"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1068364x16120073", 
      "https://app.dimensions.ai/details/publication/pub.1084984977"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_709.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s1068364x16120073"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068364x16120073'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068364x16120073'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068364x16120073'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068364x16120073'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      22 PREDICATES      77 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1068364x16120073 schema:about anzsrc-for:09
2 anzsrc-for:0904
3 schema:author Nf787932dc5034080ae3c9daa70e657ce
4 schema:citation sg:pub.10.1134/s0040579511050289
5 sg:pub.10.3103/s1068364x15070054
6 sg:pub.10.3103/s1068364x15080062
7 schema:datePublished 2016-12
8 schema:datePublishedReg 2016-12-01
9 schema:description The paper focuses on the problem of selecting the optimal topology for the water-gas shift process for the subsequent synthesis of methanol and higher alcohols. The process uses synthesis gas produced by lignite gasification. The proposed methodology employs the information approach to the creation of highly organized systems in chemical technology, so that optimization can be considered for the process of adding elements to the system step-by-step based on analysis of the organization criteria. The optimal solution is to combine gasification with two-stage high-temperature conversion on the basis of a topology in which two-stage heating precedes the first stage so as to ensure the required optimal temperatures. The optimal conversion topology is integrated with gasification to form a unified system, so as to ensure the required heating of the gasification agents.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Na7cfb5da6f9042d7bf0462519c2f2ad3
14 Nb7ca74c9001b474e9d8d33b91c3a5781
15 sg:journal.1136036
16 schema:keywords Organization criteria
17 agents
18 alcohol
19 analysis
20 approach
21 basis
22 chemical technology
23 conversion
24 conversion topology
25 creation
26 criteria
27 elements
28 first stage
29 gas
30 gasification
31 gasification agent
32 heating
33 high-temperature conversion
34 higher alcohols
35 information approach
36 lignite gasification
37 methanol
38 methodology
39 optimal conversion topology
40 optimal solution
41 optimal temperature
42 optimal topology
43 optimization
44 paper
45 problem
46 process
47 shift process
48 solution
49 stage
50 step
51 subsequent synthesis
52 syngas
53 synthesis
54 synthesis gas
55 system
56 system step
57 technology
58 temperature
59 topology
60 two-stage heating
61 two-stage high-temperature conversion
62 unified system
63 water-gas shift process
64 schema:name Selecting the optimal topology for the water-gas shift process for syngas produced by lignite gasification
65 schema:pagination 466-470
66 schema:productId N535a69240c5a4bdf912734d5673aefaf
67 Nbf24b8bcf4fc4042aed072260fd8cb6b
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084984977
69 https://doi.org/10.3103/s1068364x16120073
70 schema:sdDatePublished 2022-01-01T18:40
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher Ncfae6806b4aa404d9c193853ee350463
73 schema:url https://doi.org/10.3103/s1068364x16120073
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N0559f32f432d44acbc97593055b96aab rdf:first sg:person.014507624441.79
78 rdf:rest rdf:nil
79 N535a69240c5a4bdf912734d5673aefaf schema:name dimensions_id
80 schema:value pub.1084984977
81 rdf:type schema:PropertyValue
82 Na7cfb5da6f9042d7bf0462519c2f2ad3 schema:issueNumber 12
83 rdf:type schema:PublicationIssue
84 Na923c563d77b420988347ceb491e1932 rdf:first sg:person.016025443041.98
85 rdf:rest N0559f32f432d44acbc97593055b96aab
86 Nb7ca74c9001b474e9d8d33b91c3a5781 schema:volumeNumber 59
87 rdf:type schema:PublicationVolume
88 Nbf24b8bcf4fc4042aed072260fd8cb6b schema:name doi
89 schema:value 10.3103/s1068364x16120073
90 rdf:type schema:PropertyValue
91 Ncfae6806b4aa404d9c193853ee350463 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 Nf787932dc5034080ae3c9daa70e657ce rdf:first sg:person.015576745360.67
94 rdf:rest Na923c563d77b420988347ceb491e1932
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
99 schema:name Chemical Engineering
100 rdf:type schema:DefinedTerm
101 sg:journal.1136036 schema:issn 1068-364X
102 1934-8398
103 schema:name Coke and Chemistry
104 schema:publisher Allerton Press
105 rdf:type schema:Periodical
106 sg:person.014507624441.79 schema:affiliation grid-institutes:grid.483960.0
107 schema:familyName Naletov
108 schema:givenName A. Yu.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014507624441.79
110 rdf:type schema:Person
111 sg:person.015576745360.67 schema:affiliation grid-institutes:grid.483960.0
112 schema:familyName Naletov
113 schema:givenName V. A.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015576745360.67
115 rdf:type schema:Person
116 sg:person.016025443041.98 schema:affiliation grid-institutes:grid.483960.0
117 schema:familyName Glebov
118 schema:givenName M. B.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016025443041.98
120 rdf:type schema:Person
121 sg:pub.10.1134/s0040579511050289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044456607
122 https://doi.org/10.1134/s0040579511050289
123 rdf:type schema:CreativeWork
124 sg:pub.10.3103/s1068364x15070054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037593998
125 https://doi.org/10.3103/s1068364x15070054
126 rdf:type schema:CreativeWork
127 sg:pub.10.3103/s1068364x15080062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042758458
128 https://doi.org/10.3103/s1068364x15080062
129 rdf:type schema:CreativeWork
130 grid-institutes:grid.483960.0 schema:alternateName Mendeleev Russian Chemical-Technology University, Moscow, Russia
131 schema:name Mendeleev Russian Chemical-Technology University, Moscow, Russia
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...