Improving coke-plant efficiency by dry quenching with natural gas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02

AUTHORS

I. A. Sultanguzin, V. V. Bologova, A. M. Gyulmaliev, V. S. Glazov, R. B. Belov

ABSTRACT

The energy efficiency of a coke plant may be increased if natural gas is used in dry quenching of the coke. The heat from the decomposition products of the natural gas is employed to boost steam generation in the waste-heat boiler. In addition, the solid carbon produced in decomposition increases the coke strength. The material and thermal balance of the dry-quenching system is calculated. A TQ diagram of the heat-transfer process in the waste-heat boiler is plotted. If dry quenching with natural gas were used for all the coke produced at a full-cycle steel plant, it would be possible to use turbines of unit power 40–65 MW. The economic benefit may be assessed in terms of the decrease in coke consumption in the blast furnace and the increased power generation thanks to utilization of the coke’s waste heat, with corresponding reduction in fuel purchases. More... »

PAGES

61-67

References to SciGraph publications

  • 2011-02. Dry slaking of coke: A review in COKE AND CHEMISTRY
  • 2012-06. The global coke market in 2012: Who will replace China? in COKE AND CHEMISTRY
  • 2011-10. Enhancing coke quality in dry slaking in COKE AND CHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3103/s1068364x16020046

    DOI

    http://dx.doi.org/10.3103/s1068364x16020046

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1010039237


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0904", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Chemical Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow Energy Institute, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77852.3f", 
              "name": [
                "Moscow Energy Institute, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sultanguzin", 
            "givenName": "I. A.", 
            "id": "sg:person.015575302625.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015575302625.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow Energy Institute, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77852.3f", 
              "name": [
                "Moscow Energy Institute, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bologova", 
            "givenName": "V. V.", 
            "id": "sg:person.07406720322.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07406720322.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, pr. Leninskii 29, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.423490.8", 
              "name": [
                "Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, pr. Leninskii 29, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gyulmaliev", 
            "givenName": "A. M.", 
            "id": "sg:person.011577241722.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011577241722.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow Energy Institute, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77852.3f", 
              "name": [
                "Moscow Energy Institute, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glazov", 
            "givenName": "V. S.", 
            "id": "sg:person.016364336701.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016364336701.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow Energy Institute, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.77852.3f", 
              "name": [
                "Moscow Energy Institute, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Belov", 
            "givenName": "R. B.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.3103/s1068364x11020062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023466501", 
              "https://doi.org/10.3103/s1068364x11020062"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s1068364x11100024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048624943", 
              "https://doi.org/10.3103/s1068364x11100024"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s1068364x12060099", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039595394", 
              "https://doi.org/10.3103/s1068364x12060099"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-02", 
        "datePublishedReg": "2016-02-01", 
        "description": "The energy efficiency of a coke plant may be increased if natural gas is used in dry quenching of the coke. The heat from the decomposition products of the natural gas is employed to boost steam generation in the waste-heat boiler. In addition, the solid carbon produced in decomposition increases the coke strength. The material and thermal balance of the dry-quenching system is calculated. A TQ diagram of the heat-transfer process in the waste-heat boiler is plotted. If dry quenching with natural gas were used for all the coke produced at a full-cycle steel plant, it would be possible to use turbines of unit power 40\u201365 MW. The economic benefit may be assessed in terms of the decrease in coke consumption in the blast furnace and the increased power generation thanks to utilization of the coke\u2019s waste heat, with corresponding reduction in fuel purchases.", 
        "genre": "article", 
        "id": "sg:pub.10.3103/s1068364x16020046", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136036", 
            "issn": [
              "1068-364X", 
              "1934-8398"
            ], 
            "name": "Coke and Chemistry", 
            "publisher": "Allerton Press", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "59"
          }
        ], 
        "keywords": [
          "waste heat boiler", 
          "natural gas", 
          "waste heat", 
          "dry-quenching systems", 
          "heat transfer process", 
          "steam generation", 
          "coke consumption", 
          "blast furnace", 
          "dry quenching", 
          "coke strength", 
          "solid carbon", 
          "steel plant", 
          "thermal balance", 
          "coke plant", 
          "energy efficiency", 
          "boiler", 
          "power 40", 
          "fuel purchases", 
          "gas", 
          "coke", 
          "heat", 
          "decomposition products", 
          "turbine", 
          "furnace", 
          "economic benefits", 
          "efficiency", 
          "mW", 
          "corresponding reduction", 
          "strength", 
          "carbon", 
          "decomposition", 
          "thanks", 
          "consumption", 
          "generation", 
          "diagram", 
          "process", 
          "plants", 
          "system", 
          "quenching", 
          "utilization", 
          "reduction", 
          "products", 
          "terms", 
          "addition", 
          "balance", 
          "decrease", 
          "benefits", 
          "purchase"
        ], 
        "name": "Improving coke-plant efficiency by dry quenching with natural gas", 
        "pagination": "61-67", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1010039237"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3103/s1068364x16020046"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3103/s1068364x16020046", 
          "https://app.dimensions.ai/details/publication/pub.1010039237"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-06-01T22:14", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_697.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.3103/s1068364x16020046"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068364x16020046'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068364x16020046'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068364x16020046'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068364x16020046'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      22 PREDICATES      78 URIs      66 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3103/s1068364x16020046 schema:about anzsrc-for:09
    2 anzsrc-for:0904
    3 anzsrc-for:0915
    4 schema:author Nd40f84a6dd71432b8dc38fa045cb7d7c
    5 schema:citation sg:pub.10.3103/s1068364x11020062
    6 sg:pub.10.3103/s1068364x11100024
    7 sg:pub.10.3103/s1068364x12060099
    8 schema:datePublished 2016-02
    9 schema:datePublishedReg 2016-02-01
    10 schema:description The energy efficiency of a coke plant may be increased if natural gas is used in dry quenching of the coke. The heat from the decomposition products of the natural gas is employed to boost steam generation in the waste-heat boiler. In addition, the solid carbon produced in decomposition increases the coke strength. The material and thermal balance of the dry-quenching system is calculated. A TQ diagram of the heat-transfer process in the waste-heat boiler is plotted. If dry quenching with natural gas were used for all the coke produced at a full-cycle steel plant, it would be possible to use turbines of unit power 40–65 MW. The economic benefit may be assessed in terms of the decrease in coke consumption in the blast furnace and the increased power generation thanks to utilization of the coke’s waste heat, with corresponding reduction in fuel purchases.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N2e11cea6118145e39f5ef0c8d5257cb7
    15 Nea0b4301bea14be2a6714810007b1fb5
    16 sg:journal.1136036
    17 schema:keywords addition
    18 balance
    19 benefits
    20 blast furnace
    21 boiler
    22 carbon
    23 coke
    24 coke consumption
    25 coke plant
    26 coke strength
    27 consumption
    28 corresponding reduction
    29 decomposition
    30 decomposition products
    31 decrease
    32 diagram
    33 dry quenching
    34 dry-quenching systems
    35 economic benefits
    36 efficiency
    37 energy efficiency
    38 fuel purchases
    39 furnace
    40 gas
    41 generation
    42 heat
    43 heat transfer process
    44 mW
    45 natural gas
    46 plants
    47 power 40
    48 process
    49 products
    50 purchase
    51 quenching
    52 reduction
    53 solid carbon
    54 steam generation
    55 steel plant
    56 strength
    57 system
    58 terms
    59 thanks
    60 thermal balance
    61 turbine
    62 utilization
    63 waste heat
    64 waste heat boiler
    65 schema:name Improving coke-plant efficiency by dry quenching with natural gas
    66 schema:pagination 61-67
    67 schema:productId N3424f4a8e90049f893a66710aaa297f6
    68 Nd8b77449e1b742abbae176d9c75e1fb6
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010039237
    70 https://doi.org/10.3103/s1068364x16020046
    71 schema:sdDatePublished 2022-06-01T22:14
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N48e1123d6b28447f807e3b549ddf2fa4
    74 schema:url https://doi.org/10.3103/s1068364x16020046
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N2e11cea6118145e39f5ef0c8d5257cb7 schema:issueNumber 2
    79 rdf:type schema:PublicationIssue
    80 N3424f4a8e90049f893a66710aaa297f6 schema:name dimensions_id
    81 schema:value pub.1010039237
    82 rdf:type schema:PropertyValue
    83 N35c35ed50b9344cab3b93375e4d60c15 schema:affiliation grid-institutes:grid.77852.3f
    84 schema:familyName Belov
    85 schema:givenName R. B.
    86 rdf:type schema:Person
    87 N48e1123d6b28447f807e3b549ddf2fa4 schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 N8ea35e71380b43c084276996c098a2f6 rdf:first sg:person.011577241722.70
    90 rdf:rest Na335c2f612504fa487a1fad4c1eb2882
    91 Na335c2f612504fa487a1fad4c1eb2882 rdf:first sg:person.016364336701.10
    92 rdf:rest Nb02e16c5c6b643c5a257663e380ac027
    93 Nb02e16c5c6b643c5a257663e380ac027 rdf:first N35c35ed50b9344cab3b93375e4d60c15
    94 rdf:rest rdf:nil
    95 Ncd8d5c586e554c9999d75f4d390b1ce0 rdf:first sg:person.07406720322.06
    96 rdf:rest N8ea35e71380b43c084276996c098a2f6
    97 Nd40f84a6dd71432b8dc38fa045cb7d7c rdf:first sg:person.015575302625.94
    98 rdf:rest Ncd8d5c586e554c9999d75f4d390b1ce0
    99 Nd8b77449e1b742abbae176d9c75e1fb6 schema:name doi
    100 schema:value 10.3103/s1068364x16020046
    101 rdf:type schema:PropertyValue
    102 Nea0b4301bea14be2a6714810007b1fb5 schema:volumeNumber 59
    103 rdf:type schema:PublicationVolume
    104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Engineering
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0904 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Chemical Engineering
    109 rdf:type schema:DefinedTerm
    110 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Interdisciplinary Engineering
    112 rdf:type schema:DefinedTerm
    113 sg:journal.1136036 schema:issn 1068-364X
    114 1934-8398
    115 schema:name Coke and Chemistry
    116 schema:publisher Allerton Press
    117 rdf:type schema:Periodical
    118 sg:person.011577241722.70 schema:affiliation grid-institutes:grid.423490.8
    119 schema:familyName Gyulmaliev
    120 schema:givenName A. M.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011577241722.70
    122 rdf:type schema:Person
    123 sg:person.015575302625.94 schema:affiliation grid-institutes:grid.77852.3f
    124 schema:familyName Sultanguzin
    125 schema:givenName I. A.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015575302625.94
    127 rdf:type schema:Person
    128 sg:person.016364336701.10 schema:affiliation grid-institutes:grid.77852.3f
    129 schema:familyName Glazov
    130 schema:givenName V. S.
    131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016364336701.10
    132 rdf:type schema:Person
    133 sg:person.07406720322.06 schema:affiliation grid-institutes:grid.77852.3f
    134 schema:familyName Bologova
    135 schema:givenName V. V.
    136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07406720322.06
    137 rdf:type schema:Person
    138 sg:pub.10.3103/s1068364x11020062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023466501
    139 https://doi.org/10.3103/s1068364x11020062
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.3103/s1068364x11100024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048624943
    142 https://doi.org/10.3103/s1068364x11100024
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.3103/s1068364x12060099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039595394
    145 https://doi.org/10.3103/s1068364x12060099
    146 rdf:type schema:CreativeWork
    147 grid-institutes:grid.423490.8 schema:alternateName Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, pr. Leninskii 29, 119991, Moscow, Russia
    148 schema:name Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, pr. Leninskii 29, 119991, Moscow, Russia
    149 rdf:type schema:Organization
    150 grid-institutes:grid.77852.3f schema:alternateName Moscow Energy Institute, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia
    151 schema:name Moscow Energy Institute, ul. Krasnokazarmennaya 14, 111250, Moscow, Russia
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...