Stationary motion of a quantum particle in the field of a one-dimensional arbitrary potential View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-04

AUTHORS

A. Zh. Khachatrian, D. M. Sedrakian, V. A. Khoetsyan

ABSTRACT

A new approach to the problem of description of the stationary motion of a quantum particle in the field of a one-dimensional arbitrary potential is developed. It is shown that the wave function of infinite motion, with the accuracy to two arbitrary constants, can be expressed by means of an arbitrary single solution for some set of linear differential equations of the first order. It is shown that one general property of the Schrödinger equation solutions lies in the basis of many known methods of the problem consideration, such as the method of integral equations, transfer-matrix method, imbedding method, and method of combination of scattering parameters. Within the framework of the proposed approach, the connection between the above-mentioned methods becomes more transparent. More... »

PAGES

91-98

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s106833720902008x

DOI

http://dx.doi.org/10.3103/s106833720902008x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006242279


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Polytechnic University of Armenia", 
          "id": "https://www.grid.ac/institutes/grid.26194.38", 
          "name": [
            "State Engineering University of Armenia, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khachatrian", 
        "givenName": "A. Zh.", 
        "id": "sg:person.015373411661.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015373411661.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Yerevan State University, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedrakian", 
        "givenName": "D. M.", 
        "id": "sg:person.010547741535.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547741535.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Yerevan State University, Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khoetsyan", 
        "givenName": "V. A.", 
        "id": "sg:person.015733527703.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015733527703.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0375-9601(99)00903-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010161537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018738200101358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017965579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-2125(82)90002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018753625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0165-2125(82)90002-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018753625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.6851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.23.6851", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060529077"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-04", 
    "datePublishedReg": "2009-04-01", 
    "description": "A new approach to the problem of description of the stationary motion of a quantum particle in the field of a one-dimensional arbitrary potential is developed. It is shown that the wave function of infinite motion, with the accuracy to two arbitrary constants, can be expressed by means of an arbitrary single solution for some set of linear differential equations of the first order. It is shown that one general property of the Schr\u00f6dinger equation solutions lies in the basis of many known methods of the problem consideration, such as the method of integral equations, transfer-matrix method, imbedding method, and method of combination of scattering parameters. Within the framework of the proposed approach, the connection between the above-mentioned methods becomes more transparent.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s106833720902008x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136325", 
        "issn": [
          "1068-3372", 
          "1934-9378"
        ], 
        "name": "Journal of Contemporary Physics (Armenian Academy of Sciences)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "name": "Stationary motion of a quantum particle in the field of a one-dimensional arbitrary potential", 
    "pagination": "91-98", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1dbc0c739efe8cb6cfabb7f41fe370d96d97504bf3c08303eed2e1b57b0695dd"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s106833720902008x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006242279"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s106833720902008x", 
      "https://app.dimensions.ai/details/publication/pub.1006242279"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47976_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3103/S106833720902008X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s106833720902008x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s106833720902008x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s106833720902008x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s106833720902008x'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s106833720902008x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ne3c6cae8966e42aa8b859d4b4b83745e
4 schema:citation https://doi.org/10.1016/0165-2125(82)90002-6
5 https://doi.org/10.1016/s0375-9601(99)00903-2
6 https://doi.org/10.1080/00018738200101358
7 https://doi.org/10.1103/physrevb.23.6851
8 schema:datePublished 2009-04
9 schema:datePublishedReg 2009-04-01
10 schema:description A new approach to the problem of description of the stationary motion of a quantum particle in the field of a one-dimensional arbitrary potential is developed. It is shown that the wave function of infinite motion, with the accuracy to two arbitrary constants, can be expressed by means of an arbitrary single solution for some set of linear differential equations of the first order. It is shown that one general property of the Schrödinger equation solutions lies in the basis of many known methods of the problem consideration, such as the method of integral equations, transfer-matrix method, imbedding method, and method of combination of scattering parameters. Within the framework of the proposed approach, the connection between the above-mentioned methods becomes more transparent.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Nca2957774f774e83a36357f9320a30c3
15 Nf9739e47d79e4c98916bdb52c7044e49
16 sg:journal.1136325
17 schema:name Stationary motion of a quantum particle in the field of a one-dimensional arbitrary potential
18 schema:pagination 91-98
19 schema:productId N0d340ff1f2d84ffab83dcfbf58db0860
20 N44340343ec26456eae8be44a74f9a06d
21 N575946596ac64eee9c2335060916c85b
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006242279
23 https://doi.org/10.3103/s106833720902008x
24 schema:sdDatePublished 2019-04-11T09:11
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N4b5953876d394230aa2c6fc1b8054904
27 schema:url http://link.springer.com/10.3103/S106833720902008X
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N0d340ff1f2d84ffab83dcfbf58db0860 schema:name doi
32 schema:value 10.3103/s106833720902008x
33 rdf:type schema:PropertyValue
34 N44340343ec26456eae8be44a74f9a06d schema:name readcube_id
35 schema:value 1dbc0c739efe8cb6cfabb7f41fe370d96d97504bf3c08303eed2e1b57b0695dd
36 rdf:type schema:PropertyValue
37 N4b5953876d394230aa2c6fc1b8054904 schema:name Springer Nature - SN SciGraph project
38 rdf:type schema:Organization
39 N575946596ac64eee9c2335060916c85b schema:name dimensions_id
40 schema:value pub.1006242279
41 rdf:type schema:PropertyValue
42 N71f56a36a66a4ead95d3ad2c09100bd8 rdf:first sg:person.010547741535.23
43 rdf:rest Nf174daa9a07049fa82585e380825b243
44 Nca2957774f774e83a36357f9320a30c3 schema:issueNumber 2
45 rdf:type schema:PublicationIssue
46 Ne3c6cae8966e42aa8b859d4b4b83745e rdf:first sg:person.015373411661.89
47 rdf:rest N71f56a36a66a4ead95d3ad2c09100bd8
48 Nf174daa9a07049fa82585e380825b243 rdf:first sg:person.015733527703.02
49 rdf:rest rdf:nil
50 Nf9739e47d79e4c98916bdb52c7044e49 schema:volumeNumber 44
51 rdf:type schema:PublicationVolume
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
56 schema:name Pure Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1136325 schema:issn 1068-3372
59 1934-9378
60 schema:name Journal of Contemporary Physics (Armenian Academy of Sciences)
61 rdf:type schema:Periodical
62 sg:person.010547741535.23 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
63 schema:familyName Sedrakian
64 schema:givenName D. M.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547741535.23
66 rdf:type schema:Person
67 sg:person.015373411661.89 schema:affiliation https://www.grid.ac/institutes/grid.26194.38
68 schema:familyName Khachatrian
69 schema:givenName A. Zh.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015373411661.89
71 rdf:type schema:Person
72 sg:person.015733527703.02 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
73 schema:familyName Khoetsyan
74 schema:givenName V. A.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015733527703.02
76 rdf:type schema:Person
77 https://doi.org/10.1016/0165-2125(82)90002-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018753625
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1016/s0375-9601(99)00903-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010161537
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1080/00018738200101358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017965579
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1103/physrevb.23.6851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060529077
84 rdf:type schema:CreativeWork
85 https://www.grid.ac/institutes/grid.21072.36 schema:alternateName Yerevan State University
86 schema:name Yerevan State University, Yerevan, Armenia
87 rdf:type schema:Organization
88 https://www.grid.ac/institutes/grid.26194.38 schema:alternateName National Polytechnic University of Armenia
89 schema:name State Engineering University of Armenia, Yerevan, Armenia
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...