Ontology type: schema:ScholarlyArticle
2021-10
AUTHORSS. A. Khaibrakhmanov, A. E. Dudorov, A. I. Vasyunin, M. Yu. Kiskin
ABSTRACTThe vertical structure of accretion disks of young stars with fossil large-scale magnetic field is studied. The equations of magnetostatic equilibrium of the disk are solved taking into account the stellar gravity, gas and magnetic pressure, turbulent heating, and heating by stellar radiation. The modelled physical structure of the disk is used to simulate its chemical structure, in particular, to study the spatial distribution of CN molecules. The disk of the typical T Tauri-type star is considered. Calculations show that the temperature within the disk in the region r < 50 au decreases with height and density profiles are steeper than in the isothermal case. Outside the “dead” zone, vertical profiles of the azimuthal component of the magnetic field are nonmonotonic, and the magnetic field strength maximum is reached within the disk. The magnetic pressure gradient can cause an increase in the disk thickness in comparison with the hydrostatic one. The CN molecule concentration is maximum near the photosphere and in the disk atmosphere where the magnetic field strength at the chosen parameters is ~0.01 G. Measurements of Zeeman splitting of CN lines in the submm range can be used to determine the magnetic field strength in these regions of accretion disks. More... »
PAGES312-316
http://scigraph.springernature.com/pub.10.3103/s1068335621100067
DOIhttp://dx.doi.org/10.3103/s1068335621100067
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1143464104
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Astronomical and Space Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Chelyabinsk State University, 454001, Chelyabinsk, Russia",
"id": "http://www.grid.ac/institutes/grid.77728.3d",
"name": [
"Ural Federal University, 620002, Yekaterinburg, Russia",
"Chelyabinsk State University, 454001, Chelyabinsk, Russia"
],
"type": "Organization"
},
"familyName": "Khaibrakhmanov",
"givenName": "S. A.",
"id": "sg:person.011542513171.31",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011542513171.31"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ural Federal University, 620002, Yekaterinburg, Russia",
"id": "http://www.grid.ac/institutes/grid.412761.7",
"name": [
"Chelyabinsk State University, 454001, Chelyabinsk, Russia",
"Ural Federal University, 620002, Yekaterinburg, Russia"
],
"type": "Organization"
},
"familyName": "Dudorov",
"givenName": "A. E.",
"id": "sg:person.010745132571.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010745132571.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ural Federal University, 620002, Yekaterinburg, Russia",
"id": "http://www.grid.ac/institutes/grid.412761.7",
"name": [
"Ural Federal University, 620002, Yekaterinburg, Russia"
],
"type": "Organization"
},
"familyName": "Vasyunin",
"givenName": "A. I.",
"id": "sg:person.013537261341.35",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013537261341.35"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ural Federal University, 620002, Yekaterinburg, Russia",
"id": "http://www.grid.ac/institutes/grid.412761.7",
"name": [
"Ural Federal University, 620002, Yekaterinburg, Russia"
],
"type": "Organization"
},
"familyName": "Kiskin",
"givenName": "M. Yu.",
"id": "sg:person.011254552702.34",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254552702.34"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1134/s1063772912120013",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048024896",
"https://doi.org/10.1134/s1063772912120013"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s10509-014-1900-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035163552",
"https://doi.org/10.1007/s10509-014-1900-4"
],
"type": "CreativeWork"
}
],
"datePublished": "2021-10",
"datePublishedReg": "2021-10-01",
"description": "The vertical structure of accretion disks of young stars with fossil large-scale magnetic field is studied. The equations of magnetostatic equilibrium of the disk are solved taking into account the stellar gravity, gas and magnetic pressure, turbulent heating, and heating by stellar radiation. The modelled physical structure of the disk is used to simulate its chemical structure, in particular, to study the spatial distribution of CN molecules. The disk of the typical T Tauri-type star is considered. Calculations show that the temperature within the disk in the region r < 50 au decreases with height and density profiles are steeper than in the isothermal case. Outside the \u201cdead\u201d zone, vertical profiles of the azimuthal component of the magnetic field are nonmonotonic, and the magnetic field strength maximum is reached within the disk. The magnetic pressure gradient can cause an increase in the disk thickness in comparison with the hydrostatic one. The CN molecule concentration is maximum near the photosphere and in the disk atmosphere where the magnetic field strength at the chosen parameters is ~0.01 G. Measurements of Zeeman splitting of CN lines in the submm range can be used to determine the magnetic field strength in these regions of accretion disks.",
"genre": "article",
"id": "sg:pub.10.3103/s1068335621100067",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1280524",
"issn": [
"1068-3356",
"1934-838X"
],
"name": "Bulletin of the Lebedev Physics Institute",
"publisher": "Allerton Press",
"type": "Periodical"
},
{
"issueNumber": "10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "48"
}
],
"keywords": [
"accretion disk",
"magnetic field strength",
"young stars",
"magnetic field",
"T Tauri-type stars",
"large-scale magnetic field",
"magnetic pressure gradient",
"field strength",
"stellar radiation",
"stellar gravity",
"disk atmosphere",
"submm range",
"turbulent heating",
"Zeeman splitting",
"magnetic pressure",
"magnetostatic equilibrium",
"CN molecules",
"density profiles",
"CN lines",
"azimuthal component",
"stars",
"G. Measurements",
"disk thickness",
"isothermal case",
"region R",
"Au decreases",
"vertical structure",
"disk",
"hydrostatic one",
"molecule concentration",
"photosphere",
"strength maximum",
"field",
"physical structure",
"heating",
"pressure gradient",
"equations",
"spatial distribution",
"radiation",
"splitting",
"vertical profiles",
"structure",
"calculations",
"gravity",
"atmosphere",
"gas",
"measurements",
"thickness",
"parameters",
"temperature",
"maximum",
"equilibrium",
"profile",
"distribution",
"molecules",
"range",
"chemical structure",
"account",
"strength",
"gradient",
"one",
"region",
"lines",
"cases",
"height",
"pressure",
"comparison",
"components",
"increase",
"decrease",
"zone",
"Physical",
"concentration"
],
"name": "Physical and Chemical Vertical Structure of Magnetostatic Accretion Disks of Young Stars",
"pagination": "312-316",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1143464104"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.3103/s1068335621100067"
]
}
],
"sameAs": [
"https://doi.org/10.3103/s1068335621100067",
"https://app.dimensions.ai/details/publication/pub.1143464104"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:24",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_911.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.3103/s1068335621100067"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068335621100067'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068335621100067'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068335621100067'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068335621100067'
This table displays all metadata directly associated to this object as RDF triples.
165 TRIPLES
22 PREDICATES
101 URIs
91 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.3103/s1068335621100067 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0201 |
3 | ″ | schema:author | N6c694e4a7066444c80811f02df3e371e |
4 | ″ | schema:citation | sg:pub.10.1007/s10509-014-1900-4 |
5 | ″ | ″ | sg:pub.10.1134/s1063772912120013 |
6 | ″ | schema:datePublished | 2021-10 |
7 | ″ | schema:datePublishedReg | 2021-10-01 |
8 | ″ | schema:description | The vertical structure of accretion disks of young stars with fossil large-scale magnetic field is studied. The equations of magnetostatic equilibrium of the disk are solved taking into account the stellar gravity, gas and magnetic pressure, turbulent heating, and heating by stellar radiation. The modelled physical structure of the disk is used to simulate its chemical structure, in particular, to study the spatial distribution of CN molecules. The disk of the typical T Tauri-type star is considered. Calculations show that the temperature within the disk in the region r < 50 au decreases with height and density profiles are steeper than in the isothermal case. Outside the “dead” zone, vertical profiles of the azimuthal component of the magnetic field are nonmonotonic, and the magnetic field strength maximum is reached within the disk. The magnetic pressure gradient can cause an increase in the disk thickness in comparison with the hydrostatic one. The CN molecule concentration is maximum near the photosphere and in the disk atmosphere where the magnetic field strength at the chosen parameters is ~0.01 G. Measurements of Zeeman splitting of CN lines in the submm range can be used to determine the magnetic field strength in these regions of accretion disks. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | Naf034434d2a24ee0ba15c4c90108f7ef |
13 | ″ | ″ | Nc69900ebfd364e6e97dcae08a39804cd |
14 | ″ | ″ | sg:journal.1280524 |
15 | ″ | schema:keywords | Au decreases |
16 | ″ | ″ | CN lines |
17 | ″ | ″ | CN molecules |
18 | ″ | ″ | G. Measurements |
19 | ″ | ″ | Physical |
20 | ″ | ″ | T Tauri-type stars |
21 | ″ | ″ | Zeeman splitting |
22 | ″ | ″ | account |
23 | ″ | ″ | accretion disk |
24 | ″ | ″ | atmosphere |
25 | ″ | ″ | azimuthal component |
26 | ″ | ″ | calculations |
27 | ″ | ″ | cases |
28 | ″ | ″ | chemical structure |
29 | ″ | ″ | comparison |
30 | ″ | ″ | components |
31 | ″ | ″ | concentration |
32 | ″ | ″ | decrease |
33 | ″ | ″ | density profiles |
34 | ″ | ″ | disk |
35 | ″ | ″ | disk atmosphere |
36 | ″ | ″ | disk thickness |
37 | ″ | ″ | distribution |
38 | ″ | ″ | equations |
39 | ″ | ″ | equilibrium |
40 | ″ | ″ | field |
41 | ″ | ″ | field strength |
42 | ″ | ″ | gas |
43 | ″ | ″ | gradient |
44 | ″ | ″ | gravity |
45 | ″ | ″ | heating |
46 | ″ | ″ | height |
47 | ″ | ″ | hydrostatic one |
48 | ″ | ″ | increase |
49 | ″ | ″ | isothermal case |
50 | ″ | ″ | large-scale magnetic field |
51 | ″ | ″ | lines |
52 | ″ | ″ | magnetic field |
53 | ″ | ″ | magnetic field strength |
54 | ″ | ″ | magnetic pressure |
55 | ″ | ″ | magnetic pressure gradient |
56 | ″ | ″ | magnetostatic equilibrium |
57 | ″ | ″ | maximum |
58 | ″ | ″ | measurements |
59 | ″ | ″ | molecule concentration |
60 | ″ | ″ | molecules |
61 | ″ | ″ | one |
62 | ″ | ″ | parameters |
63 | ″ | ″ | photosphere |
64 | ″ | ″ | physical structure |
65 | ″ | ″ | pressure |
66 | ″ | ″ | pressure gradient |
67 | ″ | ″ | profile |
68 | ″ | ″ | radiation |
69 | ″ | ″ | range |
70 | ″ | ″ | region |
71 | ″ | ″ | region R |
72 | ″ | ″ | spatial distribution |
73 | ″ | ″ | splitting |
74 | ″ | ″ | stars |
75 | ″ | ″ | stellar gravity |
76 | ″ | ″ | stellar radiation |
77 | ″ | ″ | strength |
78 | ″ | ″ | strength maximum |
79 | ″ | ″ | structure |
80 | ″ | ″ | submm range |
81 | ″ | ″ | temperature |
82 | ″ | ″ | thickness |
83 | ″ | ″ | turbulent heating |
84 | ″ | ″ | vertical profiles |
85 | ″ | ″ | vertical structure |
86 | ″ | ″ | young stars |
87 | ″ | ″ | zone |
88 | ″ | schema:name | Physical and Chemical Vertical Structure of Magnetostatic Accretion Disks of Young Stars |
89 | ″ | schema:pagination | 312-316 |
90 | ″ | schema:productId | N9b6182a7564c4a31a2ed8c095f7b26ed |
91 | ″ | ″ | N9f9d28cd66be48168ca273a3e585eeee |
92 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1143464104 |
93 | ″ | ″ | https://doi.org/10.3103/s1068335621100067 |
94 | ″ | schema:sdDatePublished | 2022-06-01T22:24 |
95 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
96 | ″ | schema:sdPublisher | Ndab4990b274541038041f6f24a6cf664 |
97 | ″ | schema:url | https://doi.org/10.3103/s1068335621100067 |
98 | ″ | sgo:license | sg:explorer/license/ |
99 | ″ | sgo:sdDataset | articles |
100 | ″ | rdf:type | schema:ScholarlyArticle |
101 | N28aada349ae24a8498c1abd12dbbc285 | rdf:first | sg:person.013537261341.35 |
102 | ″ | rdf:rest | N7fa628a434f647d0aaa4868eb28c1b89 |
103 | N6c694e4a7066444c80811f02df3e371e | rdf:first | sg:person.011542513171.31 |
104 | ″ | rdf:rest | Naf9f4274370047b1a18f15bdfefa0489 |
105 | N7fa628a434f647d0aaa4868eb28c1b89 | rdf:first | sg:person.011254552702.34 |
106 | ″ | rdf:rest | rdf:nil |
107 | N9b6182a7564c4a31a2ed8c095f7b26ed | schema:name | doi |
108 | ″ | schema:value | 10.3103/s1068335621100067 |
109 | ″ | rdf:type | schema:PropertyValue |
110 | N9f9d28cd66be48168ca273a3e585eeee | schema:name | dimensions_id |
111 | ″ | schema:value | pub.1143464104 |
112 | ″ | rdf:type | schema:PropertyValue |
113 | Naf034434d2a24ee0ba15c4c90108f7ef | schema:issueNumber | 10 |
114 | ″ | rdf:type | schema:PublicationIssue |
115 | Naf9f4274370047b1a18f15bdfefa0489 | rdf:first | sg:person.010745132571.35 |
116 | ″ | rdf:rest | N28aada349ae24a8498c1abd12dbbc285 |
117 | Nc69900ebfd364e6e97dcae08a39804cd | schema:volumeNumber | 48 |
118 | ″ | rdf:type | schema:PublicationVolume |
119 | Ndab4990b274541038041f6f24a6cf664 | schema:name | Springer Nature - SN SciGraph project |
120 | ″ | rdf:type | schema:Organization |
121 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
122 | ″ | schema:name | Physical Sciences |
123 | ″ | rdf:type | schema:DefinedTerm |
124 | anzsrc-for:0201 | schema:inDefinedTermSet | anzsrc-for: |
125 | ″ | schema:name | Astronomical and Space Sciences |
126 | ″ | rdf:type | schema:DefinedTerm |
127 | sg:journal.1280524 | schema:issn | 1068-3356 |
128 | ″ | ″ | 1934-838X |
129 | ″ | schema:name | Bulletin of the Lebedev Physics Institute |
130 | ″ | schema:publisher | Allerton Press |
131 | ″ | rdf:type | schema:Periodical |
132 | sg:person.010745132571.35 | schema:affiliation | grid-institutes:grid.412761.7 |
133 | ″ | schema:familyName | Dudorov |
134 | ″ | schema:givenName | A. E. |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010745132571.35 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.011254552702.34 | schema:affiliation | grid-institutes:grid.412761.7 |
138 | ″ | schema:familyName | Kiskin |
139 | ″ | schema:givenName | M. Yu. |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254552702.34 |
141 | ″ | rdf:type | schema:Person |
142 | sg:person.011542513171.31 | schema:affiliation | grid-institutes:grid.77728.3d |
143 | ″ | schema:familyName | Khaibrakhmanov |
144 | ″ | schema:givenName | S. A. |
145 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011542513171.31 |
146 | ″ | rdf:type | schema:Person |
147 | sg:person.013537261341.35 | schema:affiliation | grid-institutes:grid.412761.7 |
148 | ″ | schema:familyName | Vasyunin |
149 | ″ | schema:givenName | A. I. |
150 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013537261341.35 |
151 | ″ | rdf:type | schema:Person |
152 | sg:pub.10.1007/s10509-014-1900-4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035163552 |
153 | ″ | ″ | https://doi.org/10.1007/s10509-014-1900-4 |
154 | ″ | rdf:type | schema:CreativeWork |
155 | sg:pub.10.1134/s1063772912120013 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1048024896 |
156 | ″ | ″ | https://doi.org/10.1134/s1063772912120013 |
157 | ″ | rdf:type | schema:CreativeWork |
158 | grid-institutes:grid.412761.7 | schema:alternateName | Ural Federal University, 620002, Yekaterinburg, Russia |
159 | ″ | schema:name | Chelyabinsk State University, 454001, Chelyabinsk, Russia |
160 | ″ | ″ | Ural Federal University, 620002, Yekaterinburg, Russia |
161 | ″ | rdf:type | schema:Organization |
162 | grid-institutes:grid.77728.3d | schema:alternateName | Chelyabinsk State University, 454001, Chelyabinsk, Russia |
163 | ″ | schema:name | Chelyabinsk State University, 454001, Chelyabinsk, Russia |
164 | ″ | ″ | Ural Federal University, 620002, Yekaterinburg, Russia |
165 | ″ | rdf:type | schema:Organization |