On a Phenomenological Approach to Gravity View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

A. I. Nikishov

ABSTRACT

Applying the theory of sources I consider the consequences of using field theoretical 3- graviton vertex instead of the vertex of general relativity. As an example I look for the lowest nonlinear terms in the exteriormetric of a spherically symmetric body. Themethod suggests that the algorithm of obtaining the metric cannot be reduced to solving the Einstein equation. It also seems that in nonlinear approximation the concept of a test particle moving in external gravitational field can be sustained only for a nonrelativistic particle. More... »

PAGES

360-368

References to SciGraph publications

  • 2006-10. On the phenomenological three-graviton vertex in PHYSICS OF PARTICLES AND NUCLEI
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3103/s106833561811009x

    DOI

    http://dx.doi.org/10.3103/s106833561811009x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1110658792


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.425806.d", 
              "name": [
                "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nikishov", 
            "givenName": "A. I.", 
            "id": "sg:person.014356525075.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014356525075.10"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s1063779606050042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021233845", 
              "https://doi.org/10.1134/s1063779606050042"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-11", 
        "datePublishedReg": "2018-11-01", 
        "description": "Applying the theory of sources I consider the consequences of using field theoretical 3- graviton vertex instead of the vertex of general relativity. As an example I look for the lowest nonlinear terms in the exteriormetric of a spherically symmetric body. Themethod suggests that the algorithm of obtaining the metric cannot be reduced to solving the Einstein equation. It also seems that in nonlinear approximation the concept of a test particle moving in external gravitational field can be sustained only for a nonrelativistic particle.", 
        "genre": "article", 
        "id": "sg:pub.10.3103/s106833561811009x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1280524", 
            "issn": [
              "1068-3356", 
              "1934-838X"
            ], 
            "name": "Bulletin of the Lebedev Physics Institute", 
            "publisher": "Allerton Press", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "45"
          }
        ], 
        "keywords": [
          "external gravitational field", 
          "nonrelativistic particles", 
          "general relativity", 
          "gravitational field", 
          "test particles", 
          "Einstein equations", 
          "Source I", 
          "particles", 
          "field", 
          "relativity", 
          "phenomenological approach", 
          "examples I", 
          "gravity", 
          "symmetric body", 
          "approximation", 
          "nonlinear terms", 
          "nonlinear approximation", 
          "theory", 
          "themethod", 
          "equations", 
          "terms", 
          "vertices", 
          "consequences", 
          "concept", 
          "approach", 
          "metrics", 
          "body", 
          "algorithm", 
          "lowest nonlinear terms", 
          "exteriormetric"
        ], 
        "name": "On a Phenomenological Approach to Gravity", 
        "pagination": "360-368", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1110658792"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3103/s106833561811009x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3103/s106833561811009x", 
          "https://app.dimensions.ai/details/publication/pub.1110658792"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_792.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.3103/s106833561811009x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s106833561811009x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s106833561811009x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s106833561811009x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s106833561811009x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    92 TRIPLES      22 PREDICATES      57 URIs      48 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3103/s106833561811009x schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Nf94db50a4a334b2794166e5fb07ece54
    4 schema:citation sg:pub.10.1134/s1063779606050042
    5 schema:datePublished 2018-11
    6 schema:datePublishedReg 2018-11-01
    7 schema:description Applying the theory of sources I consider the consequences of using field theoretical 3- graviton vertex instead of the vertex of general relativity. As an example I look for the lowest nonlinear terms in the exteriormetric of a spherically symmetric body. Themethod suggests that the algorithm of obtaining the metric cannot be reduced to solving the Einstein equation. It also seems that in nonlinear approximation the concept of a test particle moving in external gravitational field can be sustained only for a nonrelativistic particle.
    8 schema:genre article
    9 schema:inLanguage en
    10 schema:isAccessibleForFree false
    11 schema:isPartOf N8031047eba644abf90ef1bb123c5c7d5
    12 Nfd48086e079d41baa2eb5d2ea10e54a5
    13 sg:journal.1280524
    14 schema:keywords Einstein equations
    15 Source I
    16 algorithm
    17 approach
    18 approximation
    19 body
    20 concept
    21 consequences
    22 equations
    23 examples I
    24 exteriormetric
    25 external gravitational field
    26 field
    27 general relativity
    28 gravitational field
    29 gravity
    30 lowest nonlinear terms
    31 metrics
    32 nonlinear approximation
    33 nonlinear terms
    34 nonrelativistic particles
    35 particles
    36 phenomenological approach
    37 relativity
    38 symmetric body
    39 terms
    40 test particles
    41 themethod
    42 theory
    43 vertices
    44 schema:name On a Phenomenological Approach to Gravity
    45 schema:pagination 360-368
    46 schema:productId N8a668ffd8a1c44b6af4757eb3c74a553
    47 Ncaf9ef9b185a42bbb5810a7d6f18e86e
    48 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110658792
    49 https://doi.org/10.3103/s106833561811009x
    50 schema:sdDatePublished 2021-11-01T18:34
    51 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    52 schema:sdPublisher N2094b9e376f34c148bbdda169d9a1f47
    53 schema:url https://doi.org/10.3103/s106833561811009x
    54 sgo:license sg:explorer/license/
    55 sgo:sdDataset articles
    56 rdf:type schema:ScholarlyArticle
    57 N2094b9e376f34c148bbdda169d9a1f47 schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 N8031047eba644abf90ef1bb123c5c7d5 schema:issueNumber 11
    60 rdf:type schema:PublicationIssue
    61 N8a668ffd8a1c44b6af4757eb3c74a553 schema:name doi
    62 schema:value 10.3103/s106833561811009x
    63 rdf:type schema:PropertyValue
    64 Ncaf9ef9b185a42bbb5810a7d6f18e86e schema:name dimensions_id
    65 schema:value pub.1110658792
    66 rdf:type schema:PropertyValue
    67 Nf94db50a4a334b2794166e5fb07ece54 rdf:first sg:person.014356525075.10
    68 rdf:rest rdf:nil
    69 Nfd48086e079d41baa2eb5d2ea10e54a5 schema:volumeNumber 45
    70 rdf:type schema:PublicationVolume
    71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Mathematical Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Pure Mathematics
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1280524 schema:issn 1068-3356
    78 1934-838X
    79 schema:name Bulletin of the Lebedev Physics Institute
    80 schema:publisher Allerton Press
    81 rdf:type schema:Periodical
    82 sg:person.014356525075.10 schema:affiliation grid-institutes:grid.425806.d
    83 schema:familyName Nikishov
    84 schema:givenName A. I.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014356525075.10
    86 rdf:type schema:Person
    87 sg:pub.10.1134/s1063779606050042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021233845
    88 https://doi.org/10.1134/s1063779606050042
    89 rdf:type schema:CreativeWork
    90 grid-institutes:grid.425806.d schema:alternateName Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
    91 schema:name Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
    92 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...