Algorithm for Processing and Analysis of Raman Spectra using Neural Networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

E. V. Dyachkov, M. A. Kazaryan, A. V. Obkhodskiy, E. V. Obkhodskaya, A. S. Popov, V. I. Sachkov

ABSTRACT

The solution of the problem of processing of a large data set when analyzing Raman spectra of a gas mixture is considered. The algorithm is based on the artificial neural network. Conditions for the use of neural networks in solving practical problems of real-time analyzing spectra, including that for remote search for heavy hydrocarbons are determined. The algorithm speed is estimated using computer aids with sequential and parallel data processing. More... »

PAGES

331-333

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1068335618110015

DOI

http://dx.doi.org/10.3103/s1068335618110015

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110658784


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dyachkov", 
        "givenName": "E. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazaryan", 
        "givenName": "M. A.", 
        "id": "sg:person.010570671107.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Obkhodskiy", 
        "givenName": "A. V.", 
        "id": "sg:person.07373002213.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07373002213.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Obkhodskaya", 
        "givenName": "E. V.", 
        "id": "sg:person.015547602345.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547602345.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popov", 
        "givenName": "A. S.", 
        "id": "sg:person.016233645425.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016233645425.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sachkov", 
        "givenName": "V. I.", 
        "id": "sg:person.015076631501.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015076631501.56"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The solution of the problem of processing of a large data set when analyzing Raman spectra of a gas mixture is considered. The algorithm is based on the artificial neural network. Conditions for the use of neural networks in solving practical problems of real-time analyzing spectra, including that for remote search for heavy hydrocarbons are determined. The algorithm speed is estimated using computer aids with sequential and parallel data processing.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s1068335618110015", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1280524", 
        "issn": [
          "1068-3356", 
          "1934-838X"
        ], 
        "name": "Bulletin of the Lebedev Physics Institute", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "neural network", 
      "parallel data processing", 
      "artificial neural network", 
      "problem of processing", 
      "algorithm speed", 
      "remote search", 
      "large data", 
      "data processing", 
      "computer aid", 
      "network", 
      "algorithm", 
      "practical problems", 
      "processing", 
      "search", 
      "speed", 
      "solution", 
      "data", 
      "aid", 
      "use", 
      "analysis", 
      "spectra", 
      "conditions", 
      "mixture", 
      "problem", 
      "gas mixture", 
      "Raman spectra", 
      "hydrocarbons", 
      "heavy hydrocarbons"
    ], 
    "name": "Algorithm for Processing and Analysis of Raman Spectra using Neural Networks", 
    "pagination": "331-333", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110658784"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1068335618110015"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1068335618110015", 
      "https://app.dimensions.ai/details/publication/pub.1110658784"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_770.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s1068335618110015"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      54 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1068335618110015 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N1bd3ab51e7b840b1a45d099d1f310318
4 schema:datePublished 2018-11
5 schema:datePublishedReg 2018-11-01
6 schema:description The solution of the problem of processing of a large data set when analyzing Raman spectra of a gas mixture is considered. The algorithm is based on the artificial neural network. Conditions for the use of neural networks in solving practical problems of real-time analyzing spectra, including that for remote search for heavy hydrocarbons are determined. The algorithm speed is estimated using computer aids with sequential and parallel data processing.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N4dc837c52adf47d7a73af713c02689ea
11 N4efbfe075e3543c7a0d480daa55138da
12 sg:journal.1280524
13 schema:keywords Raman spectra
14 aid
15 algorithm
16 algorithm speed
17 analysis
18 artificial neural network
19 computer aid
20 conditions
21 data
22 data processing
23 gas mixture
24 heavy hydrocarbons
25 hydrocarbons
26 large data
27 mixture
28 network
29 neural network
30 parallel data processing
31 practical problems
32 problem
33 problem of processing
34 processing
35 remote search
36 search
37 solution
38 spectra
39 speed
40 use
41 schema:name Algorithm for Processing and Analysis of Raman Spectra using Neural Networks
42 schema:pagination 331-333
43 schema:productId N2ec355f140974296acaf46a7efb49221
44 N8aa9905ea68940b79b04c2ef5916ac32
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110658784
46 https://doi.org/10.3103/s1068335618110015
47 schema:sdDatePublished 2021-11-01T18:32
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N16518d17daa140e69c356f75816e5cab
50 schema:url https://doi.org/10.3103/s1068335618110015
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N05bb5a60170c4bdbb12ea1e1c434166c rdf:first sg:person.015547602345.36
55 rdf:rest N545a6bc6eb214759a96ff889ec84bef3
56 N16518d17daa140e69c356f75816e5cab schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N1bd3ab51e7b840b1a45d099d1f310318 rdf:first N31a6606f9c984b2382e7d924457beb3a
59 rdf:rest N742f64b778374450a6b8754594d4e38a
60 N22a9a3aa7b8d4f85b9177785e39fed9d rdf:first sg:person.015076631501.56
61 rdf:rest rdf:nil
62 N2ec355f140974296acaf46a7efb49221 schema:name dimensions_id
63 schema:value pub.1110658784
64 rdf:type schema:PropertyValue
65 N31a6606f9c984b2382e7d924457beb3a schema:affiliation grid-institutes:grid.77602.34
66 schema:familyName Dyachkov
67 schema:givenName E. V.
68 rdf:type schema:Person
69 N38e59b118f1b4e07ad4bb0584426371c rdf:first sg:person.07373002213.05
70 rdf:rest N05bb5a60170c4bdbb12ea1e1c434166c
71 N4dc837c52adf47d7a73af713c02689ea schema:issueNumber 11
72 rdf:type schema:PublicationIssue
73 N4efbfe075e3543c7a0d480daa55138da schema:volumeNumber 45
74 rdf:type schema:PublicationVolume
75 N545a6bc6eb214759a96ff889ec84bef3 rdf:first sg:person.016233645425.45
76 rdf:rest N22a9a3aa7b8d4f85b9177785e39fed9d
77 N742f64b778374450a6b8754594d4e38a rdf:first sg:person.010570671107.78
78 rdf:rest N38e59b118f1b4e07ad4bb0584426371c
79 N8aa9905ea68940b79b04c2ef5916ac32 schema:name doi
80 schema:value 10.3103/s1068335618110015
81 rdf:type schema:PropertyValue
82 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
83 schema:name Information and Computing Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
86 schema:name Artificial Intelligence and Image Processing
87 rdf:type schema:DefinedTerm
88 sg:journal.1280524 schema:issn 1068-3356
89 1934-838X
90 schema:name Bulletin of the Lebedev Physics Institute
91 schema:publisher Allerton Press
92 rdf:type schema:Periodical
93 sg:person.010570671107.78 schema:affiliation grid-institutes:grid.425806.d
94 schema:familyName Kazaryan
95 schema:givenName M. A.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78
97 rdf:type schema:Person
98 sg:person.015076631501.56 schema:affiliation grid-institutes:grid.77602.34
99 schema:familyName Sachkov
100 schema:givenName V. I.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015076631501.56
102 rdf:type schema:Person
103 sg:person.015547602345.36 schema:affiliation grid-institutes:grid.77602.34
104 schema:familyName Obkhodskaya
105 schema:givenName E. V.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547602345.36
107 rdf:type schema:Person
108 sg:person.016233645425.45 schema:affiliation grid-institutes:grid.77602.34
109 schema:familyName Popov
110 schema:givenName A. S.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016233645425.45
112 rdf:type schema:Person
113 sg:person.07373002213.05 schema:affiliation grid-institutes:grid.77602.34
114 schema:familyName Obkhodskiy
115 schema:givenName A. V.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07373002213.05
117 rdf:type schema:Person
118 grid-institutes:grid.425806.d schema:alternateName Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
119 schema:name Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
120 rdf:type schema:Organization
121 grid-institutes:grid.77602.34 schema:alternateName National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia
122 schema:name National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...