Algorithm for Processing and Analysis of Raman Spectra using Neural Networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

E. V. Dyachkov, M. A. Kazaryan, A. V. Obkhodskiy, E. V. Obkhodskaya, A. S. Popov, V. I. Sachkov

ABSTRACT

The solution of the problem of processing of a large data set when analyzing Raman spectra of a gas mixture is considered. The algorithm is based on the artificial neural network. Conditions for the use of neural networks in solving practical problems of real-time analyzing spectra, including that for remote search for heavy hydrocarbons are determined. The algorithm speed is estimated using computer aids with sequential and parallel data processing. More... »

PAGES

331-333

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1068335618110015

DOI

http://dx.doi.org/10.3103/s1068335618110015

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110658784


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dyachkov", 
        "givenName": "E. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazaryan", 
        "givenName": "M. A.", 
        "id": "sg:person.010570671107.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Obkhodskiy", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Obkhodskaya", 
        "givenName": "E. V.", 
        "id": "sg:person.015547602345.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547602345.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popov", 
        "givenName": "A. S.", 
        "id": "sg:person.016233645425.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016233645425.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sachkov", 
        "givenName": "V. I.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0168-9002(01)01962-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045922529"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The solution of the problem of processing of a large data set when analyzing Raman spectra of a gas mixture is considered. The algorithm is based on the artificial neural network. Conditions for the use of neural networks in solving practical problems of real-time analyzing spectra, including that for remote search for heavy hydrocarbons are determined. The algorithm speed is estimated using computer aids with sequential and parallel data processing.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.3103/s1068335618110015", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1280524", 
        "issn": [
          "1068-3356", 
          "1934-838X"
        ], 
        "name": "Bulletin of the Lebedev Physics Institute", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Algorithm for Processing and Analysis of Raman Spectra using Neural Networks", 
    "pagination": "331-333", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bf44de4f6acb6a28f9b15aa7208a461227e74f72693a88057e1f15b4a43ab571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1068335618110015"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110658784"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1068335618110015", 
      "https://app.dimensions.ai/details/publication/pub.1110658784"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000296_0000000296/records_57214_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS1068335618110015"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1068335618110015 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N4c8ae251a8b1470f83f6915c9f1a1b0a
4 schema:citation https://doi.org/10.1016/s0168-9002(01)01962-3
5 schema:datePublished 2018-11
6 schema:datePublishedReg 2018-11-01
7 schema:description The solution of the problem of processing of a large data set when analyzing Raman spectra of a gas mixture is considered. The algorithm is based on the artificial neural network. Conditions for the use of neural networks in solving practical problems of real-time analyzing spectra, including that for remote search for heavy hydrocarbons are determined. The algorithm speed is estimated using computer aids with sequential and parallel data processing.
8 schema:genre non_research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N08d49a94878b40fdbc561df22a84d5e1
12 N44cb14423d284dbb8e5cca3699d9fdf9
13 sg:journal.1280524
14 schema:name Algorithm for Processing and Analysis of Raman Spectra using Neural Networks
15 schema:pagination 331-333
16 schema:productId N0c09d9ac9290422e849e9e74e487bfca
17 N11f4efea373d4a159ef4c78e59f24d25
18 N1b7f446173ca45ee9109efb1a7f77af4
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110658784
20 https://doi.org/10.3103/s1068335618110015
21 schema:sdDatePublished 2019-04-11T08:24
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N79e1b78f1daf4fdca864e5b8cfe88ace
24 schema:url https://link.springer.com/10.3103%2FS1068335618110015
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N03d7bc78f305443cabf0b4b5261f4c7f rdf:first N3dc752b328214e1fb657a72d1e181a36
29 rdf:rest rdf:nil
30 N08d49a94878b40fdbc561df22a84d5e1 schema:volumeNumber 45
31 rdf:type schema:PublicationVolume
32 N0c09d9ac9290422e849e9e74e487bfca schema:name dimensions_id
33 schema:value pub.1110658784
34 rdf:type schema:PropertyValue
35 N11f4efea373d4a159ef4c78e59f24d25 schema:name readcube_id
36 schema:value bf44de4f6acb6a28f9b15aa7208a461227e74f72693a88057e1f15b4a43ab571
37 rdf:type schema:PropertyValue
38 N1b7f446173ca45ee9109efb1a7f77af4 schema:name doi
39 schema:value 10.3103/s1068335618110015
40 rdf:type schema:PropertyValue
41 N3dc752b328214e1fb657a72d1e181a36 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
42 schema:familyName Sachkov
43 schema:givenName V. I.
44 rdf:type schema:Person
45 N44cb14423d284dbb8e5cca3699d9fdf9 schema:issueNumber 11
46 rdf:type schema:PublicationIssue
47 N4c8ae251a8b1470f83f6915c9f1a1b0a rdf:first Nea119fc99c104b2c8da3265e84839ccd
48 rdf:rest Na2a96145683f4f7f829bddf1d3714104
49 N79e1b78f1daf4fdca864e5b8cfe88ace schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N7dd22efd7f294880a90d01f7730afb1b rdf:first Nbf5da3f4b2204755896d3cc68c6d2bf0
52 rdf:rest Na98d244e4bd2444297943313446ffe55
53 Na2a96145683f4f7f829bddf1d3714104 rdf:first sg:person.010570671107.78
54 rdf:rest N7dd22efd7f294880a90d01f7730afb1b
55 Na98d244e4bd2444297943313446ffe55 rdf:first sg:person.015547602345.36
56 rdf:rest Nb9a62e87ff4d4ea098d215406dd1495c
57 Nb9a62e87ff4d4ea098d215406dd1495c rdf:first sg:person.016233645425.45
58 rdf:rest N03d7bc78f305443cabf0b4b5261f4c7f
59 Nbf5da3f4b2204755896d3cc68c6d2bf0 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
60 schema:familyName Obkhodskiy
61 schema:givenName A. V.
62 rdf:type schema:Person
63 Nea119fc99c104b2c8da3265e84839ccd schema:affiliation https://www.grid.ac/institutes/grid.77602.34
64 schema:familyName Dyachkov
65 schema:givenName E. V.
66 rdf:type schema:Person
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:journal.1280524 schema:issn 1068-3356
74 1934-838X
75 schema:name Bulletin of the Lebedev Physics Institute
76 rdf:type schema:Periodical
77 sg:person.010570671107.78 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
78 schema:familyName Kazaryan
79 schema:givenName M. A.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78
81 rdf:type schema:Person
82 sg:person.015547602345.36 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
83 schema:familyName Obkhodskaya
84 schema:givenName E. V.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547602345.36
86 rdf:type schema:Person
87 sg:person.016233645425.45 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
88 schema:familyName Popov
89 schema:givenName A. S.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016233645425.45
91 rdf:type schema:Person
92 https://doi.org/10.1016/s0168-9002(01)01962-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045922529
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
95 schema:name Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
96 rdf:type schema:Organization
97 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
98 schema:name National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...