Algorithm for Processing and Analysis of Raman Spectra using Neural Networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

E. V. Dyachkov, M. A. Kazaryan, A. V. Obkhodskiy, E. V. Obkhodskaya, A. S. Popov, V. I. Sachkov

ABSTRACT

The solution of the problem of processing of a large data set when analyzing Raman spectra of a gas mixture is considered. The algorithm is based on the artificial neural network. Conditions for the use of neural networks in solving practical problems of real-time analyzing spectra, including that for remote search for heavy hydrocarbons are determined. The algorithm speed is estimated using computer aids with sequential and parallel data processing. More... »

PAGES

331-333

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1068335618110015

DOI

http://dx.doi.org/10.3103/s1068335618110015

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110658784


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dyachkov", 
        "givenName": "E. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazaryan", 
        "givenName": "M. A.", 
        "id": "sg:person.010570671107.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Obkhodskiy", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Obkhodskaya", 
        "givenName": "E. V.", 
        "id": "sg:person.015547602345.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547602345.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popov", 
        "givenName": "A. S.", 
        "id": "sg:person.016233645425.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016233645425.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sachkov", 
        "givenName": "V. I.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0168-9002(01)01962-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045922529"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The solution of the problem of processing of a large data set when analyzing Raman spectra of a gas mixture is considered. The algorithm is based on the artificial neural network. Conditions for the use of neural networks in solving practical problems of real-time analyzing spectra, including that for remote search for heavy hydrocarbons are determined. The algorithm speed is estimated using computer aids with sequential and parallel data processing.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.3103/s1068335618110015", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1280524", 
        "issn": [
          "1068-3356", 
          "1934-838X"
        ], 
        "name": "Bulletin of the Lebedev Physics Institute", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Algorithm for Processing and Analysis of Raman Spectra using Neural Networks", 
    "pagination": "331-333", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bf44de4f6acb6a28f9b15aa7208a461227e74f72693a88057e1f15b4a43ab571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1068335618110015"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110658784"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1068335618110015", 
      "https://app.dimensions.ai/details/publication/pub.1110658784"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000296_0000000296/records_57214_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS1068335618110015"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1068335618110015 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N661255a3bad647d0bf09eb0708857d70
4 schema:citation https://doi.org/10.1016/s0168-9002(01)01962-3
5 schema:datePublished 2018-11
6 schema:datePublishedReg 2018-11-01
7 schema:description The solution of the problem of processing of a large data set when analyzing Raman spectra of a gas mixture is considered. The algorithm is based on the artificial neural network. Conditions for the use of neural networks in solving practical problems of real-time analyzing spectra, including that for remote search for heavy hydrocarbons are determined. The algorithm speed is estimated using computer aids with sequential and parallel data processing.
8 schema:genre non_research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N66c9d1535aeb4e80a12f5c2c9e6bbd8c
12 Nd020d4c28ff9497899d9ad3c23895f53
13 sg:journal.1280524
14 schema:name Algorithm for Processing and Analysis of Raman Spectra using Neural Networks
15 schema:pagination 331-333
16 schema:productId N63ff753b593845b8b085118a56e78b8a
17 N94325ff787664816a2397dea66b92eb1
18 Nd5e72ef896d74b0ba2387f186119c56d
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110658784
20 https://doi.org/10.3103/s1068335618110015
21 schema:sdDatePublished 2019-04-11T08:24
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Ne9192ab621d54289b46ba563e3276133
24 schema:url https://link.springer.com/10.3103%2FS1068335618110015
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N41db1413623940268fe257eb88e7e566 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
29 schema:familyName Obkhodskiy
30 schema:givenName A. V.
31 rdf:type schema:Person
32 N60ecba5dae6a44249d48c7cee762ff43 rdf:first sg:person.016233645425.45
33 rdf:rest Nf1020523ec094c0ea382c9f42b3c0c84
34 N628c9bb2d755418f81157098ecafb5ae rdf:first sg:person.015547602345.36
35 rdf:rest N60ecba5dae6a44249d48c7cee762ff43
36 N63ff753b593845b8b085118a56e78b8a schema:name dimensions_id
37 schema:value pub.1110658784
38 rdf:type schema:PropertyValue
39 N661255a3bad647d0bf09eb0708857d70 rdf:first Nd7e1901e750c4cd6b1004657b1e470fb
40 rdf:rest N69106c60aae74d6d8a41aa09745ed1e7
41 N66c9d1535aeb4e80a12f5c2c9e6bbd8c schema:volumeNumber 45
42 rdf:type schema:PublicationVolume
43 N69106c60aae74d6d8a41aa09745ed1e7 rdf:first sg:person.010570671107.78
44 rdf:rest N98ee09c12daa45579c548d0eaf4e5283
45 N94325ff787664816a2397dea66b92eb1 schema:name readcube_id
46 schema:value bf44de4f6acb6a28f9b15aa7208a461227e74f72693a88057e1f15b4a43ab571
47 rdf:type schema:PropertyValue
48 N98ee09c12daa45579c548d0eaf4e5283 rdf:first N41db1413623940268fe257eb88e7e566
49 rdf:rest N628c9bb2d755418f81157098ecafb5ae
50 Nb5c3d41c5edd4b68af2cc445f7326839 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
51 schema:familyName Sachkov
52 schema:givenName V. I.
53 rdf:type schema:Person
54 Nd020d4c28ff9497899d9ad3c23895f53 schema:issueNumber 11
55 rdf:type schema:PublicationIssue
56 Nd5e72ef896d74b0ba2387f186119c56d schema:name doi
57 schema:value 10.3103/s1068335618110015
58 rdf:type schema:PropertyValue
59 Nd7e1901e750c4cd6b1004657b1e470fb schema:affiliation https://www.grid.ac/institutes/grid.77602.34
60 schema:familyName Dyachkov
61 schema:givenName E. V.
62 rdf:type schema:Person
63 Ne9192ab621d54289b46ba563e3276133 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Nf1020523ec094c0ea382c9f42b3c0c84 rdf:first Nb5c3d41c5edd4b68af2cc445f7326839
66 rdf:rest rdf:nil
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:journal.1280524 schema:issn 1068-3356
74 1934-838X
75 schema:name Bulletin of the Lebedev Physics Institute
76 rdf:type schema:Periodical
77 sg:person.010570671107.78 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
78 schema:familyName Kazaryan
79 schema:givenName M. A.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78
81 rdf:type schema:Person
82 sg:person.015547602345.36 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
83 schema:familyName Obkhodskaya
84 schema:givenName E. V.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547602345.36
86 rdf:type schema:Person
87 sg:person.016233645425.45 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
88 schema:familyName Popov
89 schema:givenName A. S.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016233645425.45
91 rdf:type schema:Person
92 https://doi.org/10.1016/s0168-9002(01)01962-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045922529
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
95 schema:name Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
96 rdf:type schema:Organization
97 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
98 schema:name National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...