Algorithm for Processing and Analysis of Raman Spectra using Neural Networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

E. V. Dyachkov, M. A. Kazaryan, A. V. Obkhodskiy, E. V. Obkhodskaya, A. S. Popov, V. I. Sachkov

ABSTRACT

The solution of the problem of processing of a large data set when analyzing Raman spectra of a gas mixture is considered. The algorithm is based on the artificial neural network. Conditions for the use of neural networks in solving practical problems of real-time analyzing spectra, including that for remote search for heavy hydrocarbons are determined. The algorithm speed is estimated using computer aids with sequential and parallel data processing. More... »

PAGES

331-333

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1068335618110015

DOI

http://dx.doi.org/10.3103/s1068335618110015

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110658784


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dyachkov", 
        "givenName": "E. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazaryan", 
        "givenName": "M. A.", 
        "id": "sg:person.010570671107.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Obkhodskiy", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Obkhodskaya", 
        "givenName": "E. V.", 
        "id": "sg:person.015547602345.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547602345.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popov", 
        "givenName": "A. S.", 
        "id": "sg:person.016233645425.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016233645425.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk State University", 
          "id": "https://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sachkov", 
        "givenName": "V. I.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0168-9002(01)01962-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045922529"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "The solution of the problem of processing of a large data set when analyzing Raman spectra of a gas mixture is considered. The algorithm is based on the artificial neural network. Conditions for the use of neural networks in solving practical problems of real-time analyzing spectra, including that for remote search for heavy hydrocarbons are determined. The algorithm speed is estimated using computer aids with sequential and parallel data processing.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.3103/s1068335618110015", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1280524", 
        "issn": [
          "1068-3356", 
          "1934-838X"
        ], 
        "name": "Bulletin of the Lebedev Physics Institute", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Algorithm for Processing and Analysis of Raman Spectra using Neural Networks", 
    "pagination": "331-333", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bf44de4f6acb6a28f9b15aa7208a461227e74f72693a88057e1f15b4a43ab571"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1068335618110015"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110658784"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1068335618110015", 
      "https://app.dimensions.ai/details/publication/pub.1110658784"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000296_0000000296/records_57214_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS1068335618110015"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068335618110015'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1068335618110015 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ned504df4c1164571b952036f7f53e4d9
4 schema:citation https://doi.org/10.1016/s0168-9002(01)01962-3
5 schema:datePublished 2018-11
6 schema:datePublishedReg 2018-11-01
7 schema:description The solution of the problem of processing of a large data set when analyzing Raman spectra of a gas mixture is considered. The algorithm is based on the artificial neural network. Conditions for the use of neural networks in solving practical problems of real-time analyzing spectra, including that for remote search for heavy hydrocarbons are determined. The algorithm speed is estimated using computer aids with sequential and parallel data processing.
8 schema:genre non_research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N700b12d5325e4e9d99e37fea54c1b956
12 Na75bfec703014310829b62962147e96f
13 sg:journal.1280524
14 schema:name Algorithm for Processing and Analysis of Raman Spectra using Neural Networks
15 schema:pagination 331-333
16 schema:productId N390b08b6904e48bfaffa02bf558d2303
17 N568fb5b521824ee58c70d854718107da
18 N94330dc53e854dac8f324b9db342d20d
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110658784
20 https://doi.org/10.3103/s1068335618110015
21 schema:sdDatePublished 2019-04-11T08:24
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher Na8ddd64f4a024bef8c209eebf572c80d
24 schema:url https://link.springer.com/10.3103%2FS1068335618110015
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N1ad98bb248654c0d9e806446b3739467 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
29 schema:familyName Obkhodskiy
30 schema:givenName A. V.
31 rdf:type schema:Person
32 N390b08b6904e48bfaffa02bf558d2303 schema:name readcube_id
33 schema:value bf44de4f6acb6a28f9b15aa7208a461227e74f72693a88057e1f15b4a43ab571
34 rdf:type schema:PropertyValue
35 N568fb5b521824ee58c70d854718107da schema:name doi
36 schema:value 10.3103/s1068335618110015
37 rdf:type schema:PropertyValue
38 N700b12d5325e4e9d99e37fea54c1b956 schema:issueNumber 11
39 rdf:type schema:PublicationIssue
40 N8d1ce391323e45768a1b1318629c3865 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
41 schema:familyName Sachkov
42 schema:givenName V. I.
43 rdf:type schema:Person
44 N91610853796642f985f0bc04b2514c23 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
45 schema:familyName Dyachkov
46 schema:givenName E. V.
47 rdf:type schema:Person
48 N94330dc53e854dac8f324b9db342d20d schema:name dimensions_id
49 schema:value pub.1110658784
50 rdf:type schema:PropertyValue
51 Na75bfec703014310829b62962147e96f schema:volumeNumber 45
52 rdf:type schema:PublicationVolume
53 Na8ddd64f4a024bef8c209eebf572c80d schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Nadda3b84ab1341ce813d0988eb51df0e rdf:first sg:person.016233645425.45
56 rdf:rest Ne80ea91cc9e7408da4ddd97894d55948
57 Nbab4c31d4a3d48178674dcfa9bd10b8c rdf:first N1ad98bb248654c0d9e806446b3739467
58 rdf:rest Ncce03258979c4efbb3c2112aec668849
59 Nc4f9ea0cef4b4ca7916dbe4c331ff313 rdf:first sg:person.010570671107.78
60 rdf:rest Nbab4c31d4a3d48178674dcfa9bd10b8c
61 Ncce03258979c4efbb3c2112aec668849 rdf:first sg:person.015547602345.36
62 rdf:rest Nadda3b84ab1341ce813d0988eb51df0e
63 Ne80ea91cc9e7408da4ddd97894d55948 rdf:first N8d1ce391323e45768a1b1318629c3865
64 rdf:rest rdf:nil
65 Ned504df4c1164571b952036f7f53e4d9 rdf:first N91610853796642f985f0bc04b2514c23
66 rdf:rest Nc4f9ea0cef4b4ca7916dbe4c331ff313
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:journal.1280524 schema:issn 1068-3356
74 1934-838X
75 schema:name Bulletin of the Lebedev Physics Institute
76 rdf:type schema:Periodical
77 sg:person.010570671107.78 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
78 schema:familyName Kazaryan
79 schema:givenName M. A.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78
81 rdf:type schema:Person
82 sg:person.015547602345.36 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
83 schema:familyName Obkhodskaya
84 schema:givenName E. V.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547602345.36
86 rdf:type schema:Person
87 sg:person.016233645425.45 schema:affiliation https://www.grid.ac/institutes/grid.77602.34
88 schema:familyName Popov
89 schema:givenName A. S.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016233645425.45
91 rdf:type schema:Person
92 https://doi.org/10.1016/s0168-9002(01)01962-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045922529
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
95 schema:name Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
96 rdf:type schema:Organization
97 https://www.grid.ac/institutes/grid.77602.34 schema:alternateName Tomsk State University
98 schema:name National Research Tomsk State University, pr. Lenina 30, 634034, Tomsk, Russia
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...