Plasma Discharge in Liquid Phase Media under Ultrasonic Cavitation as a Technique for Synthesizing Gaseous Hydrogen View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09

AUTHORS

N. A. Bulychev, M. A. Kazaryan, A. Ethiraj, L. L. Chaikov

ABSTRACT

It is shown that low-temperature plasma initiated in liquid-phase media in the discharge gap between electrodes can efficiently decompose hydrogen-containing molecules of organic compounds with the formation of gaseous products in which the hydrogen fraction is more than 90% (according to gas chromatography data). Preliminary estimations of the energy efficiency calculated taking into account the hydrogen and source material combustion heat and electric power expenditures showed the efficiency of the order of 60–70% depending on the source mixture composition. The discharge voltage and current were theoretically calculated in the process simulation whose data are in agreement with experimental results. More... »

PAGES

263-266

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1068335618090026

DOI

http://dx.doi.org/10.3103/s1068335618090026

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107476851


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0399", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, 125993, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.17758.3c", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
            "Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, 125993, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bulychev", 
        "givenName": "N. A.", 
        "id": "sg:person.013727055117.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013727055117.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazaryan", 
        "givenName": "M. A.", 
        "id": "sg:person.010570671107.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, VIT-AP University, 522237, Amaravati, Andhra Pradesh, India", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Physics, VIT-AP University, 522237, Amaravati, Andhra Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ethiraj", 
        "givenName": "A.", 
        "id": "sg:person.01266527727.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266527727.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaikov", 
        "givenName": "L. L.", 
        "id": "sg:person.01126010455.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126010455.60"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-09", 
    "datePublishedReg": "2018-09-01", 
    "description": "It is shown that low-temperature plasma initiated in liquid-phase media in the discharge gap between electrodes can efficiently decompose hydrogen-containing molecules of organic compounds with the formation of gaseous products in which the hydrogen fraction is more than 90% (according to gas chromatography data). Preliminary estimations of the energy efficiency calculated taking into account the hydrogen and source material combustion heat and electric power expenditures showed the efficiency of the order of 60\u201370% depending on the source mixture composition. The discharge voltage and current were theoretically calculated in the process simulation whose data are in agreement with experimental results.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s1068335618090026", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1280524", 
        "issn": [
          "1068-3356", 
          "1934-838X"
        ], 
        "name": "Bulletin of the Lebedev Physics Institute", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "hydrogen-containing molecules", 
      "liquid-phase medium", 
      "source mixture composition", 
      "organic compounds", 
      "liquid phase medium", 
      "low-temperature plasma", 
      "gaseous products", 
      "electric power expenditures", 
      "gaseous hydrogen", 
      "phase medium", 
      "discharge voltage", 
      "ultrasonic cavitation", 
      "mixture composition", 
      "plasma discharge", 
      "hydrogen", 
      "combustion heat", 
      "hydrogen fraction", 
      "process simulation", 
      "electrode", 
      "compounds", 
      "molecules", 
      "energy efficiency", 
      "discharge gap", 
      "power expenditure", 
      "efficiency", 
      "preliminary estimation", 
      "experimental results", 
      "products", 
      "formation", 
      "composition", 
      "medium", 
      "heat", 
      "cavitation", 
      "voltage", 
      "plasma", 
      "fraction", 
      "simulations", 
      "technique", 
      "current", 
      "agreement", 
      "estimation", 
      "gap", 
      "order", 
      "discharge", 
      "results", 
      "account", 
      "data", 
      "expenditure", 
      "source material combustion heat", 
      "material combustion heat"
    ], 
    "name": "Plasma Discharge in Liquid Phase Media under Ultrasonic Cavitation as a Technique for Synthesizing Gaseous Hydrogen", 
    "pagination": "263-266", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107476851"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1068335618090026"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1068335618090026", 
      "https://app.dimensions.ai/details/publication/pub.1107476851"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_772.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s1068335618090026"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068335618090026'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068335618090026'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068335618090026'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068335618090026'


 

This table displays all metadata directly associated to this object as RDF triples.

136 TRIPLES      21 PREDICATES      76 URIs      68 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1068335618090026 schema:about anzsrc-for:03
2 anzsrc-for:0399
3 schema:author Ncec8d7e04c5544fcb5fb8e7011562b30
4 schema:datePublished 2018-09
5 schema:datePublishedReg 2018-09-01
6 schema:description It is shown that low-temperature plasma initiated in liquid-phase media in the discharge gap between electrodes can efficiently decompose hydrogen-containing molecules of organic compounds with the formation of gaseous products in which the hydrogen fraction is more than 90% (according to gas chromatography data). Preliminary estimations of the energy efficiency calculated taking into account the hydrogen and source material combustion heat and electric power expenditures showed the efficiency of the order of 60–70% depending on the source mixture composition. The discharge voltage and current were theoretically calculated in the process simulation whose data are in agreement with experimental results.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N06008a7946a240108a8577782d0e8d45
11 N8a75da6f95a84aab851974ed1058eff5
12 sg:journal.1280524
13 schema:keywords account
14 agreement
15 cavitation
16 combustion heat
17 composition
18 compounds
19 current
20 data
21 discharge
22 discharge gap
23 discharge voltage
24 efficiency
25 electric power expenditures
26 electrode
27 energy efficiency
28 estimation
29 expenditure
30 experimental results
31 formation
32 fraction
33 gap
34 gaseous hydrogen
35 gaseous products
36 heat
37 hydrogen
38 hydrogen fraction
39 hydrogen-containing molecules
40 liquid phase medium
41 liquid-phase medium
42 low-temperature plasma
43 material combustion heat
44 medium
45 mixture composition
46 molecules
47 order
48 organic compounds
49 phase medium
50 plasma
51 plasma discharge
52 power expenditure
53 preliminary estimation
54 process simulation
55 products
56 results
57 simulations
58 source material combustion heat
59 source mixture composition
60 technique
61 ultrasonic cavitation
62 voltage
63 schema:name Plasma Discharge in Liquid Phase Media under Ultrasonic Cavitation as a Technique for Synthesizing Gaseous Hydrogen
64 schema:pagination 263-266
65 schema:productId N309460768c064f518017c9c30d1144cb
66 Ncbd45ce626f94b719530d3977e48d61d
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107476851
68 https://doi.org/10.3103/s1068335618090026
69 schema:sdDatePublished 2021-11-01T18:32
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N6013a6959f4d4239bc4967941dbdb961
72 schema:url https://doi.org/10.3103/s1068335618090026
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N000e93db4e7c493fa3b90b089501ee8b rdf:first sg:person.010570671107.78
77 rdf:rest N67bc0799cbb84782b9ad5cb656598113
78 N06008a7946a240108a8577782d0e8d45 schema:volumeNumber 45
79 rdf:type schema:PublicationVolume
80 N309460768c064f518017c9c30d1144cb schema:name dimensions_id
81 schema:value pub.1107476851
82 rdf:type schema:PropertyValue
83 N4f050768e82d4a95ba6c0038908fab8e rdf:first sg:person.01126010455.60
84 rdf:rest rdf:nil
85 N6013a6959f4d4239bc4967941dbdb961 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N67bc0799cbb84782b9ad5cb656598113 rdf:first sg:person.01266527727.14
88 rdf:rest N4f050768e82d4a95ba6c0038908fab8e
89 N8a75da6f95a84aab851974ed1058eff5 schema:issueNumber 9
90 rdf:type schema:PublicationIssue
91 Ncbd45ce626f94b719530d3977e48d61d schema:name doi
92 schema:value 10.3103/s1068335618090026
93 rdf:type schema:PropertyValue
94 Ncec8d7e04c5544fcb5fb8e7011562b30 rdf:first sg:person.013727055117.51
95 rdf:rest N000e93db4e7c493fa3b90b089501ee8b
96 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
97 schema:name Chemical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0399 schema:inDefinedTermSet anzsrc-for:
100 schema:name Other Chemical Sciences
101 rdf:type schema:DefinedTerm
102 sg:journal.1280524 schema:issn 1068-3356
103 1934-838X
104 schema:name Bulletin of the Lebedev Physics Institute
105 schema:publisher Allerton Press
106 rdf:type schema:Periodical
107 sg:person.010570671107.78 schema:affiliation grid-institutes:grid.425806.d
108 schema:familyName Kazaryan
109 schema:givenName M. A.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78
111 rdf:type schema:Person
112 sg:person.01126010455.60 schema:affiliation grid-institutes:grid.425806.d
113 schema:familyName Chaikov
114 schema:givenName L. L.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126010455.60
116 rdf:type schema:Person
117 sg:person.01266527727.14 schema:affiliation grid-institutes:None
118 schema:familyName Ethiraj
119 schema:givenName A.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266527727.14
121 rdf:type schema:Person
122 sg:person.013727055117.51 schema:affiliation grid-institutes:grid.17758.3c
123 schema:familyName Bulychev
124 schema:givenName N. A.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013727055117.51
126 rdf:type schema:Person
127 grid-institutes:None schema:alternateName Department of Physics, VIT-AP University, 522237, Amaravati, Andhra Pradesh, India
128 schema:name Department of Physics, VIT-AP University, 522237, Amaravati, Andhra Pradesh, India
129 rdf:type schema:Organization
130 grid-institutes:grid.17758.3c schema:alternateName Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, 125993, Moscow, Russia
131 schema:name Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
132 Moscow Aviation Institute (National Research University), Volokolamskoe sh. 4, 125993, Moscow, Russia
133 rdf:type schema:Organization
134 grid-institutes:grid.425806.d schema:alternateName Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
135 schema:name Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
136 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...