Effect of decreasing glucose concentration in blood plasma after blood saturation with oxygen View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-06

AUTHORS

G. V. Zaitseva, A. R. Zaritskii, M. N. Kirichenko, M. A. Krasnova, A. V. Kraiskii, V. A. Postnikov, M. A. Shevchenko

ABSTRACT

It was experimentally detected that the glucose concentration in blood plasma decreases after venous blood saturation with oxygen (oxygenation process). This effect was recorded for several tens of donor blood samples using IME-DC (Germany) and Optium Omega (USA) portable glucometers, as well as an optical method using holographic sensors based on hydrogel polymer films, independent of the presence of oxygen in plasma. During blood oxygenation in the organism, glucose is redistributed between blood plasma and erythrocyte cytoplasm in favor of cytoplasm. The observed effect is explained by an increase in the electric field during blood oxygenation in lipids of the erythrocyte cytoplasmic membrane, which orients dipoles of asymmetric glucose molecules along the normal to the membrane surface. This results in erythrocytemembrane permeability asymmetry. More... »

PAGES

155-158

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s106833561706001x

DOI

http://dx.doi.org/10.3103/s106833561706001x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090596006


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaitseva", 
        "givenName": "G. V.", 
        "id": "sg:person.013672722743.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013672722743.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaritskii", 
        "givenName": "A. R.", 
        "id": "sg:person.010325727755.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325727755.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirichenko", 
        "givenName": "M. N.", 
        "id": "sg:person.01174123655.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174123655.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krasnova", 
        "givenName": "M. A.", 
        "id": "sg:person.012351736243.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351736243.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kraiskii", 
        "givenName": "A. V.", 
        "id": "sg:person.07645205506.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07645205506.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, ul. Malaya Pirogovskaya 1a, 119992, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.465277.5", 
          "name": [
            "Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, ul. Malaya Pirogovskaya 1a, 119992, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Postnikov", 
        "givenName": "V. A.", 
        "id": "sg:person.014763106605.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763106605.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shevchenko", 
        "givenName": "M. A.", 
        "id": "sg:person.016356047605.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016356047605.43"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2017-06", 
    "datePublishedReg": "2017-06-01", 
    "description": "It was experimentally detected that the glucose concentration in blood plasma decreases after venous blood saturation with oxygen (oxygenation process). This effect was recorded for several tens of donor blood samples using IME-DC (Germany) and Optium Omega (USA) portable glucometers, as well as an optical method using holographic sensors based on hydrogel polymer films, independent of the presence of oxygen in plasma. During blood oxygenation in the organism, glucose is redistributed between blood plasma and erythrocyte cytoplasm in favor of cytoplasm. The observed effect is explained by an increase in the electric field during blood oxygenation in lipids of the erythrocyte cytoplasmic membrane, which orients dipoles of asymmetric glucose molecules along the normal to the membrane surface. This results in erythrocytemembrane permeability asymmetry.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s106833561706001x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1280524", 
        "issn": [
          "1068-3356", 
          "1934-838X"
        ], 
        "name": "Bulletin of the Lebedev Physics Institute", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "44"
      }
    ], 
    "keywords": [
      "holographic sensor", 
      "polymer films", 
      "electric field", 
      "membrane surface", 
      "optical methods", 
      "venous blood saturation", 
      "presence of oxygen", 
      "films", 
      "sensors", 
      "oxygen", 
      "surface", 
      "saturation", 
      "tens", 
      "plasma", 
      "field", 
      "effect", 
      "plasma decreases", 
      "glucose molecules", 
      "concentration", 
      "method", 
      "dipole", 
      "observed effects", 
      "membrane", 
      "increase", 
      "decrease", 
      "samples", 
      "blood oxygenation", 
      "glucose concentration", 
      "presence", 
      "asymmetry", 
      "blood saturation", 
      "blood plasma", 
      "molecules", 
      "glucometer", 
      "donor blood samples", 
      "portable glucometer", 
      "oxygenation", 
      "favor", 
      "glucose", 
      "blood plasma decreases", 
      "blood samples", 
      "lipids", 
      "cytoplasmic membrane", 
      "organisms", 
      "erythrocyte cytoplasm", 
      "cytoplasm", 
      "IME-DC", 
      "Optium Omega (USA) portable glucometers", 
      "Omega (USA) portable glucometers", 
      "hydrogel polymer films", 
      "favor of cytoplasm", 
      "erythrocyte cytoplasmic membrane", 
      "asymmetric glucose molecules", 
      "erythrocytemembrane permeability asymmetry", 
      "permeability asymmetry"
    ], 
    "name": "Effect of decreasing glucose concentration in blood plasma after blood saturation with oxygen", 
    "pagination": "155-158", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090596006"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s106833561706001x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s106833561706001x", 
      "https://app.dimensions.ai/details/publication/pub.1090596006"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_725.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s106833561706001x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s106833561706001x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s106833561706001x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s106833561706001x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s106833561706001x'


 

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      81 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s106833561706001x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb738a77a793440a6928c2a2cea4c1d79
4 schema:datePublished 2017-06
5 schema:datePublishedReg 2017-06-01
6 schema:description It was experimentally detected that the glucose concentration in blood plasma decreases after venous blood saturation with oxygen (oxygenation process). This effect was recorded for several tens of donor blood samples using IME-DC (Germany) and Optium Omega (USA) portable glucometers, as well as an optical method using holographic sensors based on hydrogel polymer films, independent of the presence of oxygen in plasma. During blood oxygenation in the organism, glucose is redistributed between blood plasma and erythrocyte cytoplasm in favor of cytoplasm. The observed effect is explained by an increase in the electric field during blood oxygenation in lipids of the erythrocyte cytoplasmic membrane, which orients dipoles of asymmetric glucose molecules along the normal to the membrane surface. This results in erythrocytemembrane permeability asymmetry.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N0e11180a4b884daca17168571171f0ee
11 N20ebc7d522ba43eb92e8c8cce3dad8c2
12 sg:journal.1280524
13 schema:keywords IME-DC
14 Omega (USA) portable glucometers
15 Optium Omega (USA) portable glucometers
16 asymmetric glucose molecules
17 asymmetry
18 blood oxygenation
19 blood plasma
20 blood plasma decreases
21 blood samples
22 blood saturation
23 concentration
24 cytoplasm
25 cytoplasmic membrane
26 decrease
27 dipole
28 donor blood samples
29 effect
30 electric field
31 erythrocyte cytoplasm
32 erythrocyte cytoplasmic membrane
33 erythrocytemembrane permeability asymmetry
34 favor
35 favor of cytoplasm
36 field
37 films
38 glucometer
39 glucose
40 glucose concentration
41 glucose molecules
42 holographic sensor
43 hydrogel polymer films
44 increase
45 lipids
46 membrane
47 membrane surface
48 method
49 molecules
50 observed effects
51 optical methods
52 organisms
53 oxygen
54 oxygenation
55 permeability asymmetry
56 plasma
57 plasma decreases
58 polymer films
59 portable glucometer
60 presence
61 presence of oxygen
62 samples
63 saturation
64 sensors
65 surface
66 tens
67 venous blood saturation
68 schema:name Effect of decreasing glucose concentration in blood plasma after blood saturation with oxygen
69 schema:pagination 155-158
70 schema:productId N4af86f70ba844b82bc98d2e28c7afd3d
71 Nb8ee68b79b2d4dd6915908c9294b147c
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090596006
73 https://doi.org/10.3103/s106833561706001x
74 schema:sdDatePublished 2021-12-01T19:38
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N7019483b2244479eb18c152c280d23b5
77 schema:url https://doi.org/10.3103/s106833561706001x
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0e11180a4b884daca17168571171f0ee schema:issueNumber 6
82 rdf:type schema:PublicationIssue
83 N20ebc7d522ba43eb92e8c8cce3dad8c2 schema:volumeNumber 44
84 rdf:type schema:PublicationVolume
85 N25641bc9f0e74db99978d63e3a1dceb8 rdf:first sg:person.010325727755.65
86 rdf:rest N63945e6b4b1349279015410655d79e32
87 N4af86f70ba844b82bc98d2e28c7afd3d schema:name dimensions_id
88 schema:value pub.1090596006
89 rdf:type schema:PropertyValue
90 N54948431dcc6418aa2071c9b3f3af82f rdf:first sg:person.014763106605.14
91 rdf:rest Nd3a71856560541e2ab2edde4a7db8217
92 N63945e6b4b1349279015410655d79e32 rdf:first sg:person.01174123655.63
93 rdf:rest N75d7d8318db14325a27ff8f59ffb1078
94 N7019483b2244479eb18c152c280d23b5 schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N75d7d8318db14325a27ff8f59ffb1078 rdf:first sg:person.012351736243.15
97 rdf:rest Nffc8fa2f482245c58ee8dda4e2b8144f
98 Nb738a77a793440a6928c2a2cea4c1d79 rdf:first sg:person.013672722743.43
99 rdf:rest N25641bc9f0e74db99978d63e3a1dceb8
100 Nb8ee68b79b2d4dd6915908c9294b147c schema:name doi
101 schema:value 10.3103/s106833561706001x
102 rdf:type schema:PropertyValue
103 Nd3a71856560541e2ab2edde4a7db8217 rdf:first sg:person.016356047605.43
104 rdf:rest rdf:nil
105 Nffc8fa2f482245c58ee8dda4e2b8144f rdf:first sg:person.07645205506.94
106 rdf:rest N54948431dcc6418aa2071c9b3f3af82f
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
111 schema:name Materials Engineering
112 rdf:type schema:DefinedTerm
113 sg:journal.1280524 schema:issn 1068-3356
114 1934-838X
115 schema:name Bulletin of the Lebedev Physics Institute
116 schema:publisher Allerton Press
117 rdf:type schema:Periodical
118 sg:person.010325727755.65 schema:affiliation grid-institutes:grid.425806.d
119 schema:familyName Zaritskii
120 schema:givenName A. R.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010325727755.65
122 rdf:type schema:Person
123 sg:person.01174123655.63 schema:affiliation grid-institutes:grid.425806.d
124 schema:familyName Kirichenko
125 schema:givenName M. N.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01174123655.63
127 rdf:type schema:Person
128 sg:person.012351736243.15 schema:affiliation grid-institutes:grid.425806.d
129 schema:familyName Krasnova
130 schema:givenName M. A.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012351736243.15
132 rdf:type schema:Person
133 sg:person.013672722743.43 schema:affiliation grid-institutes:grid.425806.d
134 schema:familyName Zaitseva
135 schema:givenName G. V.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013672722743.43
137 rdf:type schema:Person
138 sg:person.014763106605.14 schema:affiliation grid-institutes:grid.465277.5
139 schema:familyName Postnikov
140 schema:givenName V. A.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014763106605.14
142 rdf:type schema:Person
143 sg:person.016356047605.43 schema:affiliation grid-institutes:grid.425806.d
144 schema:familyName Shevchenko
145 schema:givenName M. A.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016356047605.43
147 rdf:type schema:Person
148 sg:person.07645205506.94 schema:affiliation grid-institutes:grid.425806.d
149 schema:familyName Kraiskii
150 schema:givenName A. V.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07645205506.94
152 rdf:type schema:Person
153 grid-institutes:grid.425806.d schema:alternateName Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
154 schema:name Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
155 rdf:type schema:Organization
156 grid-institutes:grid.465277.5 schema:alternateName Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, ul. Malaya Pirogovskaya 1a, 119992, Moscow, Russia
157 schema:name Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, ul. Malaya Pirogovskaya 1a, 119992, Moscow, Russia
158 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...