Ontology type: schema:ScholarlyArticle
2015-10
AUTHORSG. I. Zaitsev, S. V. Krivokhizha, L. L. Chaikov
ABSTRACTThe results of measurements of the hypersound velocity and absorbtion by Mandelstam—Brillouin spectra in aqueous solutions of glycerin in a wide temperature (viscosity) range are presented. It is shown that the experimental results are well described by formulas of the Isakovich—Chaban nonlocal theory based on the assumption about the two-component structure of a viscous liquid containing clusters with sharp boundaries, “floating” in a disordered liquid. In the experiment, the viscous component concentration in a low-viscosity medium was varied, which corresponded to cluster concentration variations in it. It was shown that clusters are stable structures. The number of clusters decreases as a low-viscosity solvent is added, while their size remains unchanged. More... »
PAGES283-287
http://scigraph.springernature.com/pub.10.3103/s1068335615100012
DOIhttp://dx.doi.org/10.3103/s1068335615100012
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1026992933
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Chemical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Chemistry (incl. Structural)",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Kemerovo State Technical University, ul. Vesennyaya 22, 650026, Kemerovo, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Kemerovo State Technical University, ul. Vesennyaya 22, 650026, Kemerovo, Russia"
],
"type": "Organization"
},
"familyName": "Zaitsev",
"givenName": "G. I.",
"id": "sg:person.010234424361.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010234424361.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Lebedev Physical Institute, Leninskii pr. 53, 119991, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.425806.d",
"name": [
"Lebedev Physical Institute, Leninskii pr. 53, 119991, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Krivokhizha",
"givenName": "S. V.",
"id": "sg:person.015465603154.46",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015465603154.46"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "National Research Nuclear University \u201cMEPhI\u201d, Kashirskoe sh. 31, 115409, Moscow, Russia",
"id": "http://www.grid.ac/institutes/grid.183446.c",
"name": [
"Lebedev Physical Institute, Leninskii pr. 53, 119991, Moscow, Russia",
"National Research Nuclear University \u201cMEPhI\u201d, Kashirskoe sh. 31, 115409, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Chaikov",
"givenName": "L. L.",
"id": "sg:person.01126010455.60",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126010455.60"
],
"type": "Person"
}
],
"datePublished": "2015-10",
"datePublishedReg": "2015-10-01",
"description": "The results of measurements of the hypersound velocity and absorbtion by Mandelstam\u2014Brillouin spectra in aqueous solutions of glycerin in a wide temperature (viscosity) range are presented. It is shown that the experimental results are well described by formulas of the Isakovich\u2014Chaban nonlocal theory based on the assumption about the two-component structure of a viscous liquid containing clusters with sharp boundaries, \u201cfloating\u201d in a disordered liquid. In the experiment, the viscous component concentration in a low-viscosity medium was varied, which corresponded to cluster concentration variations in it. It was shown that clusters are stable structures. The number of clusters decreases as a low-viscosity solvent is added, while their size remains unchanged.",
"genre": "article",
"id": "sg:pub.10.3103/s1068335615100012",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1280524",
"issn": [
"1068-3356",
"1934-838X"
],
"name": "Bulletin of the Lebedev Physics Institute",
"publisher": "Allerton Press",
"type": "Periodical"
},
{
"issueNumber": "10",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "42"
}
],
"keywords": [
"number of clusters",
"nonlocal theory",
"viscous liquid",
"longitudinal hypersound",
"two-component structure",
"results of measurements",
"hypersound velocity",
"wide temperature range",
"sharp boundaries",
"solution",
"stable structure",
"component concentrations",
"low viscosity ones",
"experimental results",
"theory",
"formula",
"clusters",
"hypersound",
"velocity",
"assumption",
"temperature range",
"low viscosity media",
"structure",
"liquid",
"boundaries",
"results",
"concentration variations",
"one",
"spectra",
"number",
"measurements",
"absorbtion",
"experiments",
"range",
"size",
"medium",
"variation",
"aqueous solution",
"glycerin",
"concentration",
"low viscosity solvents",
"solvent"
],
"name": "Longitudinal hypersound in solutions of a viscous liquid in a low-viscosity one",
"pagination": "283-287",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1026992933"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.3103/s1068335615100012"
]
}
],
"sameAs": [
"https://doi.org/10.3103/s1068335615100012",
"https://app.dimensions.ai/details/publication/pub.1026992933"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:30",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_652.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.3103/s1068335615100012"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068335615100012'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068335615100012'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068335615100012'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068335615100012'
This table displays all metadata directly associated to this object as RDF triples.
121 TRIPLES
21 PREDICATES
68 URIs
60 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.3103/s1068335615100012 | schema:about | anzsrc-for:03 |
2 | ″ | ″ | anzsrc-for:0306 |
3 | ″ | schema:author | N83dda11613314102bbc06d1186b45c08 |
4 | ″ | schema:datePublished | 2015-10 |
5 | ″ | schema:datePublishedReg | 2015-10-01 |
6 | ″ | schema:description | The results of measurements of the hypersound velocity and absorbtion by Mandelstam—Brillouin spectra in aqueous solutions of glycerin in a wide temperature (viscosity) range are presented. It is shown that the experimental results are well described by formulas of the Isakovich—Chaban nonlocal theory based on the assumption about the two-component structure of a viscous liquid containing clusters with sharp boundaries, “floating” in a disordered liquid. In the experiment, the viscous component concentration in a low-viscosity medium was varied, which corresponded to cluster concentration variations in it. It was shown that clusters are stable structures. The number of clusters decreases as a low-viscosity solvent is added, while their size remains unchanged. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N9f7a250e1d8d42169f4895cae895f1cc |
11 | ″ | ″ | Nb4ed510b0b0f48eebeeb221604dcd440 |
12 | ″ | ″ | sg:journal.1280524 |
13 | ″ | schema:keywords | absorbtion |
14 | ″ | ″ | aqueous solution |
15 | ″ | ″ | assumption |
16 | ″ | ″ | boundaries |
17 | ″ | ″ | clusters |
18 | ″ | ″ | component concentrations |
19 | ″ | ″ | concentration |
20 | ″ | ″ | concentration variations |
21 | ″ | ″ | experimental results |
22 | ″ | ″ | experiments |
23 | ″ | ″ | formula |
24 | ″ | ″ | glycerin |
25 | ″ | ″ | hypersound |
26 | ″ | ″ | hypersound velocity |
27 | ″ | ″ | liquid |
28 | ″ | ″ | longitudinal hypersound |
29 | ″ | ″ | low viscosity media |
30 | ″ | ″ | low viscosity ones |
31 | ″ | ″ | low viscosity solvents |
32 | ″ | ″ | measurements |
33 | ″ | ″ | medium |
34 | ″ | ″ | nonlocal theory |
35 | ″ | ″ | number |
36 | ″ | ″ | number of clusters |
37 | ″ | ″ | one |
38 | ″ | ″ | range |
39 | ″ | ″ | results |
40 | ″ | ″ | results of measurements |
41 | ″ | ″ | sharp boundaries |
42 | ″ | ″ | size |
43 | ″ | ″ | solution |
44 | ″ | ″ | solvent |
45 | ″ | ″ | spectra |
46 | ″ | ″ | stable structure |
47 | ″ | ″ | structure |
48 | ″ | ″ | temperature range |
49 | ″ | ″ | theory |
50 | ″ | ″ | two-component structure |
51 | ″ | ″ | variation |
52 | ″ | ″ | velocity |
53 | ″ | ″ | viscous liquid |
54 | ″ | ″ | wide temperature range |
55 | ″ | schema:name | Longitudinal hypersound in solutions of a viscous liquid in a low-viscosity one |
56 | ″ | schema:pagination | 283-287 |
57 | ″ | schema:productId | N6413259101324444a7a6c0a3a2d909b4 |
58 | ″ | ″ | Ndc7e1a67bfcf4f15b7e11bf10b170978 |
59 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1026992933 |
60 | ″ | ″ | https://doi.org/10.3103/s1068335615100012 |
61 | ″ | schema:sdDatePublished | 2022-05-20T07:30 |
62 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
63 | ″ | schema:sdPublisher | N30b2c39a46804eb8b0241338cf766996 |
64 | ″ | schema:url | https://doi.org/10.3103/s1068335615100012 |
65 | ″ | sgo:license | sg:explorer/license/ |
66 | ″ | sgo:sdDataset | articles |
67 | ″ | rdf:type | schema:ScholarlyArticle |
68 | N2c5c7ed00f8e4a65beef9cd7c7f50666 | rdf:first | sg:person.01126010455.60 |
69 | ″ | rdf:rest | rdf:nil |
70 | N30b2c39a46804eb8b0241338cf766996 | schema:name | Springer Nature - SN SciGraph project |
71 | ″ | rdf:type | schema:Organization |
72 | N4c9c60524bec49a6868cc6942defd60a | rdf:first | sg:person.015465603154.46 |
73 | ″ | rdf:rest | N2c5c7ed00f8e4a65beef9cd7c7f50666 |
74 | N6413259101324444a7a6c0a3a2d909b4 | schema:name | dimensions_id |
75 | ″ | schema:value | pub.1026992933 |
76 | ″ | rdf:type | schema:PropertyValue |
77 | N83dda11613314102bbc06d1186b45c08 | rdf:first | sg:person.010234424361.50 |
78 | ″ | rdf:rest | N4c9c60524bec49a6868cc6942defd60a |
79 | N9f7a250e1d8d42169f4895cae895f1cc | schema:volumeNumber | 42 |
80 | ″ | rdf:type | schema:PublicationVolume |
81 | Nb4ed510b0b0f48eebeeb221604dcd440 | schema:issueNumber | 10 |
82 | ″ | rdf:type | schema:PublicationIssue |
83 | Ndc7e1a67bfcf4f15b7e11bf10b170978 | schema:name | doi |
84 | ″ | schema:value | 10.3103/s1068335615100012 |
85 | ″ | rdf:type | schema:PropertyValue |
86 | anzsrc-for:03 | schema:inDefinedTermSet | anzsrc-for: |
87 | ″ | schema:name | Chemical Sciences |
88 | ″ | rdf:type | schema:DefinedTerm |
89 | anzsrc-for:0306 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Physical Chemistry (incl. Structural) |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | sg:journal.1280524 | schema:issn | 1068-3356 |
93 | ″ | ″ | 1934-838X |
94 | ″ | schema:name | Bulletin of the Lebedev Physics Institute |
95 | ″ | schema:publisher | Allerton Press |
96 | ″ | rdf:type | schema:Periodical |
97 | sg:person.010234424361.50 | schema:affiliation | grid-institutes:None |
98 | ″ | schema:familyName | Zaitsev |
99 | ″ | schema:givenName | G. I. |
100 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010234424361.50 |
101 | ″ | rdf:type | schema:Person |
102 | sg:person.01126010455.60 | schema:affiliation | grid-institutes:grid.183446.c |
103 | ″ | schema:familyName | Chaikov |
104 | ″ | schema:givenName | L. L. |
105 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126010455.60 |
106 | ″ | rdf:type | schema:Person |
107 | sg:person.015465603154.46 | schema:affiliation | grid-institutes:grid.425806.d |
108 | ″ | schema:familyName | Krivokhizha |
109 | ″ | schema:givenName | S. V. |
110 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015465603154.46 |
111 | ″ | rdf:type | schema:Person |
112 | grid-institutes:None | schema:alternateName | Kemerovo State Technical University, ul. Vesennyaya 22, 650026, Kemerovo, Russia |
113 | ″ | schema:name | Kemerovo State Technical University, ul. Vesennyaya 22, 650026, Kemerovo, Russia |
114 | ″ | rdf:type | schema:Organization |
115 | grid-institutes:grid.183446.c | schema:alternateName | National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, 115409, Moscow, Russia |
116 | ″ | schema:name | Lebedev Physical Institute, Leninskii pr. 53, 119991, Moscow, Russia |
117 | ″ | ″ | National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, 115409, Moscow, Russia |
118 | ″ | rdf:type | schema:Organization |
119 | grid-institutes:grid.425806.d | schema:alternateName | Lebedev Physical Institute, Leninskii pr. 53, 119991, Moscow, Russia |
120 | ″ | schema:name | Lebedev Physical Institute, Leninskii pr. 53, 119991, Moscow, Russia |
121 | ″ | rdf:type | schema:Organization |