Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 1. Method ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-09

AUTHORS

N. A. Bulychev, M. A. Kazaryan, L. L. Chaikov, I. S. Burkhanov, V. I. Krasovskii

ABSTRACT

It is shown that a new form of the plasma discharge with bulk glow throughout the space between electrodes and an descending current-voltage characteristic, occurring in liquid in an ultrasonic field with an intensity above the cavitation threshold, can be efficiently used to initiate the various physical and chemical processes. In such an acoustic plasma discharge, nanoparticles of oxides of various metals, i.e., aluminum, copper, tin, iron, titanium, indium, zinc, molybdenum, and others, are synthesized with controllable particle shape and size and narrow size distribution. Micrographs of some nanoparticles are presented. The difference in luminescence of particles produced in the absence and presence of cavitation is shown. More... »

PAGES

264-268

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s106833561409005x

DOI

http://dx.doi.org/10.3103/s106833561409005x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038403730


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bulychev", 
        "givenName": "N. A.", 
        "id": "sg:person.011471413375.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471413375.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazaryan", 
        "givenName": "M. A.", 
        "id": "sg:person.010570671107.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Nuclear University \u201cMEPhI\u201d, Kashirskoe sh. 31, 115409, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
            "National Research Nuclear University \u201cMEPhI\u201d, Kashirskoe sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chaikov", 
        "givenName": "L. L.", 
        "id": "sg:person.01126010455.60", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126010455.60"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Burkhanov", 
        "givenName": "I. S.", 
        "id": "sg:person.013670430445.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013670430445.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.424964.9", 
          "name": [
            "National Research Nuclear University \u201cMEPhI\u201d, Kashirskoe sh. 31, 115409, Moscow, Russia", 
            "Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krasovskii", 
        "givenName": "V. I.", 
        "id": "sg:person.014301251101.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301251101.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0012500806040045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044026755", 
          "https://doi.org/10.1134/s0012500806040045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0020168510040138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010993760", 
          "https://doi.org/10.1134/s0020168510040138"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-09", 
    "datePublishedReg": "2014-09-01", 
    "description": "It is shown that a new form of the plasma discharge with bulk glow throughout the space between electrodes and an descending current-voltage characteristic, occurring in liquid in an ultrasonic field with an intensity above the cavitation threshold, can be efficiently used to initiate the various physical and chemical processes. In such an acoustic plasma discharge, nanoparticles of oxides of various metals, i.e., aluminum, copper, tin, iron, titanium, indium, zinc, molybdenum, and others, are synthesized with controllable particle shape and size and narrow size distribution. Micrographs of some nanoparticles are presented. The difference in luminescence of particles produced in the absence and presence of cavitation is shown.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s106833561409005x", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1280524", 
        "issn": [
          "1068-3356", 
          "1934-838X"
        ], 
        "name": "Bulletin of the Lebedev Physics Institute", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "41"
      }
    ], 
    "keywords": [
      "Nanoscale metal oxide particles", 
      "metal oxide particles", 
      "nanoparticles of oxides", 
      "narrow size distribution", 
      "plasma discharge", 
      "oxide particles", 
      "current-voltage characteristics", 
      "chemical processes", 
      "ultrasonic field", 
      "ultrasonic cavitation", 
      "liquid phase", 
      "nanoparticles", 
      "particle shape", 
      "presence of cavitation", 
      "size distribution", 
      "cavitation threshold", 
      "particles", 
      "cavitation", 
      "electrode", 
      "molybdenum", 
      "luminescence", 
      "oxide", 
      "copper", 
      "metals", 
      "liquid", 
      "titanium", 
      "indium", 
      "aluminum", 
      "iron", 
      "tin", 
      "micrographs", 
      "zinc", 
      "discharge", 
      "phase", 
      "shape", 
      "field", 
      "characteristics", 
      "process", 
      "presence", 
      "size", 
      "distribution", 
      "intensity", 
      "method", 
      "glow", 
      "form", 
      "space", 
      "threshold", 
      "absence", 
      "exposure", 
      "new forms", 
      "differences", 
      "bulk glow", 
      "acoustic plasma discharge", 
      "controllable particle shape", 
      "luminescence of particles"
    ], 
    "name": "Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 1. Method for producing particles", 
    "pagination": "264-268", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038403730"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s106833561409005x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s106833561409005x", 
      "https://app.dimensions.ai/details/publication/pub.1038403730"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_625.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s106833561409005x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s106833561409005x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s106833561409005x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s106833561409005x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s106833561409005x'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      22 PREDICATES      83 URIs      73 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s106833561409005x schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N4064903ddcd34461be48529a5108135c
4 schema:citation sg:pub.10.1134/s0012500806040045
5 sg:pub.10.1134/s0020168510040138
6 schema:datePublished 2014-09
7 schema:datePublishedReg 2014-09-01
8 schema:description It is shown that a new form of the plasma discharge with bulk glow throughout the space between electrodes and an descending current-voltage characteristic, occurring in liquid in an ultrasonic field with an intensity above the cavitation threshold, can be efficiently used to initiate the various physical and chemical processes. In such an acoustic plasma discharge, nanoparticles of oxides of various metals, i.e., aluminum, copper, tin, iron, titanium, indium, zinc, molybdenum, and others, are synthesized with controllable particle shape and size and narrow size distribution. Micrographs of some nanoparticles are presented. The difference in luminescence of particles produced in the absence and presence of cavitation is shown.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N4257c822541f4b9ab065213e57991827
13 Nd4c046922f9c4249ba99b1aad9ae50e2
14 sg:journal.1280524
15 schema:keywords Nanoscale metal oxide particles
16 absence
17 acoustic plasma discharge
18 aluminum
19 bulk glow
20 cavitation
21 cavitation threshold
22 characteristics
23 chemical processes
24 controllable particle shape
25 copper
26 current-voltage characteristics
27 differences
28 discharge
29 distribution
30 electrode
31 exposure
32 field
33 form
34 glow
35 indium
36 intensity
37 iron
38 liquid
39 liquid phase
40 luminescence
41 luminescence of particles
42 metal oxide particles
43 metals
44 method
45 micrographs
46 molybdenum
47 nanoparticles
48 nanoparticles of oxides
49 narrow size distribution
50 new forms
51 oxide
52 oxide particles
53 particle shape
54 particles
55 phase
56 plasma discharge
57 presence
58 presence of cavitation
59 process
60 shape
61 size
62 size distribution
63 space
64 threshold
65 tin
66 titanium
67 ultrasonic cavitation
68 ultrasonic field
69 zinc
70 schema:name Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 1. Method for producing particles
71 schema:pagination 264-268
72 schema:productId N4524491a21e246faa9f8641167cc3dcb
73 Nb036a4713f7c404882c6a6405d34d7da
74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038403730
75 https://doi.org/10.3103/s106833561409005x
76 schema:sdDatePublished 2021-11-01T18:22
77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
78 schema:sdPublisher Nb9633ab99b0e4f1590a7b05a96ac103e
79 schema:url https://doi.org/10.3103/s106833561409005x
80 sgo:license sg:explorer/license/
81 sgo:sdDataset articles
82 rdf:type schema:ScholarlyArticle
83 N4064903ddcd34461be48529a5108135c rdf:first sg:person.011471413375.17
84 rdf:rest N59091c48912640a398f76cd78cfe9ab3
85 N4138d2e77567403abb25a625cfa109c8 rdf:first sg:person.014301251101.65
86 rdf:rest rdf:nil
87 N4257c822541f4b9ab065213e57991827 schema:volumeNumber 41
88 rdf:type schema:PublicationVolume
89 N4524491a21e246faa9f8641167cc3dcb schema:name doi
90 schema:value 10.3103/s106833561409005x
91 rdf:type schema:PropertyValue
92 N59091c48912640a398f76cd78cfe9ab3 rdf:first sg:person.010570671107.78
93 rdf:rest Nb36431696bf04d7e82dc7b755e31e6b5
94 Nb036a4713f7c404882c6a6405d34d7da schema:name dimensions_id
95 schema:value pub.1038403730
96 rdf:type schema:PropertyValue
97 Nb36431696bf04d7e82dc7b755e31e6b5 rdf:first sg:person.01126010455.60
98 rdf:rest Nd4f0c9f04c4c47368ea13582a5c1023f
99 Nb9633ab99b0e4f1590a7b05a96ac103e schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 Nd4c046922f9c4249ba99b1aad9ae50e2 schema:issueNumber 9
102 rdf:type schema:PublicationIssue
103 Nd4f0c9f04c4c47368ea13582a5c1023f rdf:first sg:person.013670430445.35
104 rdf:rest N4138d2e77567403abb25a625cfa109c8
105 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
106 schema:name Chemical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
109 schema:name Physical Chemistry (incl. Structural)
110 rdf:type schema:DefinedTerm
111 sg:journal.1280524 schema:issn 1068-3356
112 1934-838X
113 schema:name Bulletin of the Lebedev Physics Institute
114 schema:publisher Allerton Press
115 rdf:type schema:Periodical
116 sg:person.010570671107.78 schema:affiliation grid-institutes:grid.425806.d
117 schema:familyName Kazaryan
118 schema:givenName M. A.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78
120 rdf:type schema:Person
121 sg:person.01126010455.60 schema:affiliation grid-institutes:grid.183446.c
122 schema:familyName Chaikov
123 schema:givenName L. L.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01126010455.60
125 rdf:type schema:Person
126 sg:person.011471413375.17 schema:affiliation grid-institutes:grid.425806.d
127 schema:familyName Bulychev
128 schema:givenName N. A.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471413375.17
130 rdf:type schema:Person
131 sg:person.013670430445.35 schema:affiliation grid-institutes:grid.425806.d
132 schema:familyName Burkhanov
133 schema:givenName I. S.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013670430445.35
135 rdf:type schema:Person
136 sg:person.014301251101.65 schema:affiliation grid-institutes:grid.424964.9
137 schema:familyName Krasovskii
138 schema:givenName V. I.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301251101.65
140 rdf:type schema:Person
141 sg:pub.10.1134/s0012500806040045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044026755
142 https://doi.org/10.1134/s0012500806040045
143 rdf:type schema:CreativeWork
144 sg:pub.10.1134/s0020168510040138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010993760
145 https://doi.org/10.1134/s0020168510040138
146 rdf:type schema:CreativeWork
147 grid-institutes:grid.183446.c schema:alternateName National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, 115409, Moscow, Russia
148 schema:name Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
149 National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, 115409, Moscow, Russia
150 rdf:type schema:Organization
151 grid-institutes:grid.424964.9 schema:alternateName Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia
152 schema:name National Research Nuclear University “MEPhI”, Kashirskoe sh. 31, 115409, Moscow, Russia
153 Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia
154 rdf:type schema:Organization
155 grid-institutes:grid.425806.d schema:alternateName Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
156 schema:name Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...