Effect of the surface state on pulsed laser etching of ultrananocrystalline nitrogen-doped diamond films View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-12

AUTHORS

M. S. Komlenok, V. G. Ralchenko, V. I. Konov

ABSTRACT

It is shown that the rate of laser oxidation of ultrananocrystalline films in the nanoablation mode is limited by the presence of physically and chemically adsorbed hydrogen-containing molecules on the surface and can be increased by preliminary thermal annealing. It is proposed to explain the observed saturation of the laser etching rate with the number of pulses by water molecule dissociation on the surface and film saturation with hydride and hydroxyl groups. More... »

PAGES

354-356

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1068335613120051

DOI

http://dx.doi.org/10.3103/s1068335613120051

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011369152


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Komlenok", 
        "givenName": "M. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ralchenko", 
        "givenName": "V. G.", 
        "id": "sg:person.016264152212.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016264152212.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konov", 
        "givenName": "V. I.", 
        "id": "sg:person.013212222701.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013212222701.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.diamond.2007.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014703238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diamond.2007.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015267904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.phpro.2011.03.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019351833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.susc.2003.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031707897"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jno.2009.1030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032250044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diamond.2007.07.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037116608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200700442", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051607013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp910971e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056119125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp910971e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056119125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/qe2007v037n11abeh013515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058187513"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-12", 
    "datePublishedReg": "2013-12-01", 
    "description": "It is shown that the rate of laser oxidation of ultrananocrystalline films in the nanoablation mode is limited by the presence of physically and chemically adsorbed hydrogen-containing molecules on the surface and can be increased by preliminary thermal annealing. It is proposed to explain the observed saturation of the laser etching rate with the number of pulses by water molecule dissociation on the surface and film saturation with hydride and hydroxyl groups.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s1068335613120051", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1280524", 
        "issn": [
          "1068-3356", 
          "1934-838X"
        ], 
        "name": "Bulletin of the Lebedev Physics Institute", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "40"
      }
    ], 
    "name": "Effect of the surface state on pulsed laser etching of ultrananocrystalline nitrogen-doped diamond films", 
    "pagination": "354-356", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "362aa613b522b3ce8f4dcf90b58590b6b4bfbdba7b50f8d33792cc1b0f22dd1b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1068335613120051"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011369152"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1068335613120051", 
      "https://app.dimensions.ai/details/publication/pub.1011369152"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000504.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3103/S1068335613120051"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068335613120051'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068335613120051'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068335613120051'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068335613120051'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1068335613120051 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nf32fd8db5259439999695fb1ad742b77
4 schema:citation https://doi.org/10.1002/adma.200700442
5 https://doi.org/10.1016/j.diamond.2007.05.005
6 https://doi.org/10.1016/j.diamond.2007.07.007
7 https://doi.org/10.1016/j.diamond.2007.10.004
8 https://doi.org/10.1016/j.phpro.2011.03.103
9 https://doi.org/10.1016/j.susc.2003.12.015
10 https://doi.org/10.1021/jp910971e
11 https://doi.org/10.1070/qe2007v037n11abeh013515
12 https://doi.org/10.1166/jno.2009.1030
13 schema:datePublished 2013-12
14 schema:datePublishedReg 2013-12-01
15 schema:description It is shown that the rate of laser oxidation of ultrananocrystalline films in the nanoablation mode is limited by the presence of physically and chemically adsorbed hydrogen-containing molecules on the surface and can be increased by preliminary thermal annealing. It is proposed to explain the observed saturation of the laser etching rate with the number of pulses by water molecule dissociation on the surface and film saturation with hydride and hydroxyl groups.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N5f2a30618ffb4cf2a73dc6bf1fccdeed
20 Nbbc490c3d77f45b8a1cc25cb5f1f5f58
21 sg:journal.1280524
22 schema:name Effect of the surface state on pulsed laser etching of ultrananocrystalline nitrogen-doped diamond films
23 schema:pagination 354-356
24 schema:productId N049bb63a9e4444149be3b2f8a3767689
25 N8c3e4d6939d94c01915a9ec8f8ce755a
26 Nc2e04953fe474312933b7ec3a7d88853
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011369152
28 https://doi.org/10.3103/s1068335613120051
29 schema:sdDatePublished 2019-04-10T19:06
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher Na150844a5073487eb97734916dffffe8
32 schema:url http://link.springer.com/10.3103/S1068335613120051
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N049bb63a9e4444149be3b2f8a3767689 schema:name dimensions_id
37 schema:value pub.1011369152
38 rdf:type schema:PropertyValue
39 N04dc762eadcb43968621babcd0472801 rdf:first sg:person.016264152212.96
40 rdf:rest Nec78d087ae4e4013b9f6ffeeac89674c
41 N1e95aae05489451ba8123b20550e0d3f schema:affiliation https://www.grid.ac/institutes/grid.4886.2
42 schema:familyName Komlenok
43 schema:givenName M. S.
44 rdf:type schema:Person
45 N5f2a30618ffb4cf2a73dc6bf1fccdeed schema:volumeNumber 40
46 rdf:type schema:PublicationVolume
47 N8c3e4d6939d94c01915a9ec8f8ce755a schema:name doi
48 schema:value 10.3103/s1068335613120051
49 rdf:type schema:PropertyValue
50 Na150844a5073487eb97734916dffffe8 schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 Nbbc490c3d77f45b8a1cc25cb5f1f5f58 schema:issueNumber 12
53 rdf:type schema:PublicationIssue
54 Nc2e04953fe474312933b7ec3a7d88853 schema:name readcube_id
55 schema:value 362aa613b522b3ce8f4dcf90b58590b6b4bfbdba7b50f8d33792cc1b0f22dd1b
56 rdf:type schema:PropertyValue
57 Nec78d087ae4e4013b9f6ffeeac89674c rdf:first sg:person.013212222701.85
58 rdf:rest rdf:nil
59 Nf32fd8db5259439999695fb1ad742b77 rdf:first N1e95aae05489451ba8123b20550e0d3f
60 rdf:rest N04dc762eadcb43968621babcd0472801
61 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
62 schema:name Chemical Sciences
63 rdf:type schema:DefinedTerm
64 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
65 schema:name Physical Chemistry (incl. Structural)
66 rdf:type schema:DefinedTerm
67 sg:journal.1280524 schema:issn 1068-3356
68 1934-838X
69 schema:name Bulletin of the Lebedev Physics Institute
70 rdf:type schema:Periodical
71 sg:person.013212222701.85 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
72 schema:familyName Konov
73 schema:givenName V. I.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013212222701.85
75 rdf:type schema:Person
76 sg:person.016264152212.96 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
77 schema:familyName Ralchenko
78 schema:givenName V. G.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016264152212.96
80 rdf:type schema:Person
81 https://doi.org/10.1002/adma.200700442 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051607013
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.diamond.2007.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014703238
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/j.diamond.2007.07.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037116608
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/j.diamond.2007.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015267904
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/j.phpro.2011.03.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019351833
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1016/j.susc.2003.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031707897
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1021/jp910971e schema:sameAs https://app.dimensions.ai/details/publication/pub.1056119125
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1070/qe2007v037n11abeh013515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058187513
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1166/jno.2009.1030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032250044
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
100 schema:name Prokhorov General Physics Institute, Russian Academy of Sciences, ul. Vavilova 38, 119991, Moscow, Russia
101 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...