Electronic structure and optical properties of gold nanoparticles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-09

AUTHORS

V. G. Yarzhemskii, M. A. Kazaryan, E. N. Murav’ev

ABSTRACT

Based on nonempirical calculations of the Au32 cluster, it is found that excited states from which only the quadrupole transition to the ground state is possible arise upon excitation of gold nanoparticles by photons with energies exceeding the minimum energy gap between occupied and vacant states. The possible role of such transitions in lasing of the nanoscale laser called the spaser is discussed. More... »

PAGES

254-256

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1068335612090023

DOI

http://dx.doi.org/10.3103/s1068335612090023

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053220669


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1007", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Nanotechnology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Academy of Engineering Sciences, Presnenskii val. 17, 123557, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991, Moscow, Russia", 
            "Moscow Institute of Physics and Technology, Institutskii per. 9, 141700, Dolgoprudnyi, Moscow Oblast, Russia", 
            "Academy of Engineering Sciences, Presnenskii val. 17, 123557, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yarzhemskii", 
        "givenName": "V. G.", 
        "id": "sg:person.013522034043.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013522034043.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Engineering Sciences, Presnenskii val. 17, 123557, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia", 
            "National Academy of Sciences of Armenia, Marshall Baghramian Avenue 24, 0019, Yerevan, Republic of Armenia", 
            "Academy of Engineering Sciences, Presnenskii val. 17, 123557, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazaryan", 
        "givenName": "M. A.", 
        "id": "sg:person.010570671107.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Engineering Sciences, Presnenskii val. 17, 123557, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Technical Glass, ul. Krzhizhanovskogo 29, 117218, Moscow, Russia", 
            "Academy of Engineering Sciences, Presnenskii val. 17, 123557, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murav\u2019ev", 
        "givenName": "E. N.", 
        "id": "sg:person.016355145667.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355145667.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11671-008-9181-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011025523", 
          "https://doi.org/10.1007/s11671-008-9181-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0020168512110180", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040338424", 
          "https://doi.org/10.1134/s0020168512110180"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08318", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014287162", 
          "https://doi.org/10.1038/nature08318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s003602361114004x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048509553", 
          "https://doi.org/10.1134/s003602361114004x"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-09", 
    "datePublishedReg": "2012-09-01", 
    "description": "Based on nonempirical calculations of the Au32 cluster, it is found that excited states from which only the quadrupole transition to the ground state is possible arise upon excitation of gold nanoparticles by photons with energies exceeding the minimum energy gap between occupied and vacant states. The possible role of such transitions in lasing of the nanoscale laser called the spaser is discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s1068335612090023", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1280524", 
        "issn": [
          "1068-3356", 
          "1934-838X"
        ], 
        "name": "Bulletin of the Lebedev Physics Institute", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "keywords": [
      "gold nanoparticles", 
      "nanoscale lasers", 
      "quadrupole transitions", 
      "minimum energy gap", 
      "Au32 cluster", 
      "excited states", 
      "vacant states", 
      "optical properties", 
      "ground state", 
      "energy gap", 
      "electronic structure", 
      "nonempirical calculations", 
      "nanoparticles", 
      "such transitions", 
      "photons", 
      "spaser", 
      "lasing", 
      "laser", 
      "transition", 
      "excitation", 
      "state", 
      "energy", 
      "calculations", 
      "properties", 
      "clusters", 
      "structure", 
      "gap", 
      "arise", 
      "role", 
      "possible role", 
      "possible arise"
    ], 
    "name": "Electronic structure and optical properties of gold nanoparticles", 
    "pagination": "254-256", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053220669"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1068335612090023"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1068335612090023", 
      "https://app.dimensions.ai/details/publication/pub.1053220669"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_560.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s1068335612090023"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1068335612090023'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1068335612090023'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1068335612090023'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1068335612090023'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      22 PREDICATES      63 URIs      49 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1068335612090023 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 anzsrc-for:10
4 anzsrc-for:1007
5 schema:author N1d14c91db67041659951824f9c51053f
6 schema:citation sg:pub.10.1007/s11671-008-9181-x
7 sg:pub.10.1038/nature08318
8 sg:pub.10.1134/s0020168512110180
9 sg:pub.10.1134/s003602361114004x
10 schema:datePublished 2012-09
11 schema:datePublishedReg 2012-09-01
12 schema:description Based on nonempirical calculations of the Au32 cluster, it is found that excited states from which only the quadrupole transition to the ground state is possible arise upon excitation of gold nanoparticles by photons with energies exceeding the minimum energy gap between occupied and vacant states. The possible role of such transitions in lasing of the nanoscale laser called the spaser is discussed.
13 schema:genre article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N5c432f5833b84f178e3293fc135c1663
17 N71837f6e33834dddb2d16e2c777eeac1
18 sg:journal.1280524
19 schema:keywords Au32 cluster
20 arise
21 calculations
22 clusters
23 electronic structure
24 energy
25 energy gap
26 excitation
27 excited states
28 gap
29 gold nanoparticles
30 ground state
31 laser
32 lasing
33 minimum energy gap
34 nanoparticles
35 nanoscale lasers
36 nonempirical calculations
37 optical properties
38 photons
39 possible arise
40 possible role
41 properties
42 quadrupole transitions
43 role
44 spaser
45 state
46 structure
47 such transitions
48 transition
49 vacant states
50 schema:name Electronic structure and optical properties of gold nanoparticles
51 schema:pagination 254-256
52 schema:productId N50fc6be5773f411d9d755a4925a92424
53 N686da004ab9c4e14b07995503f27d541
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053220669
55 https://doi.org/10.3103/s1068335612090023
56 schema:sdDatePublished 2021-12-01T19:26
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher Na1b9983e90b04acc86f160a02e8044d6
59 schema:url https://doi.org/10.3103/s1068335612090023
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N1b8dca710a484bb58ffbb1dd99898faf rdf:first sg:person.010570671107.78
64 rdf:rest N1d76e4b5be5141f8b1f38c411caa3185
65 N1d14c91db67041659951824f9c51053f rdf:first sg:person.013522034043.06
66 rdf:rest N1b8dca710a484bb58ffbb1dd99898faf
67 N1d76e4b5be5141f8b1f38c411caa3185 rdf:first sg:person.016355145667.50
68 rdf:rest rdf:nil
69 N50fc6be5773f411d9d755a4925a92424 schema:name dimensions_id
70 schema:value pub.1053220669
71 rdf:type schema:PropertyValue
72 N5c432f5833b84f178e3293fc135c1663 schema:volumeNumber 39
73 rdf:type schema:PublicationVolume
74 N686da004ab9c4e14b07995503f27d541 schema:name doi
75 schema:value 10.3103/s1068335612090023
76 rdf:type schema:PropertyValue
77 N71837f6e33834dddb2d16e2c777eeac1 schema:issueNumber 9
78 rdf:type schema:PublicationIssue
79 Na1b9983e90b04acc86f160a02e8044d6 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
82 schema:name Chemical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
85 schema:name Physical Chemistry (incl. Structural)
86 rdf:type schema:DefinedTerm
87 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
88 schema:name Technology
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1007 schema:inDefinedTermSet anzsrc-for:
91 schema:name Nanotechnology
92 rdf:type schema:DefinedTerm
93 sg:journal.1280524 schema:issn 1068-3356
94 1934-838X
95 schema:name Bulletin of the Lebedev Physics Institute
96 schema:publisher Allerton Press
97 rdf:type schema:Periodical
98 sg:person.010570671107.78 schema:affiliation grid-institutes:None
99 schema:familyName Kazaryan
100 schema:givenName M. A.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78
102 rdf:type schema:Person
103 sg:person.013522034043.06 schema:affiliation grid-institutes:None
104 schema:familyName Yarzhemskii
105 schema:givenName V. G.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013522034043.06
107 rdf:type schema:Person
108 sg:person.016355145667.50 schema:affiliation grid-institutes:None
109 schema:familyName Murav’ev
110 schema:givenName E. N.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016355145667.50
112 rdf:type schema:Person
113 sg:pub.10.1007/s11671-008-9181-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1011025523
114 https://doi.org/10.1007/s11671-008-9181-x
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nature08318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014287162
117 https://doi.org/10.1038/nature08318
118 rdf:type schema:CreativeWork
119 sg:pub.10.1134/s0020168512110180 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040338424
120 https://doi.org/10.1134/s0020168512110180
121 rdf:type schema:CreativeWork
122 sg:pub.10.1134/s003602361114004x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048509553
123 https://doi.org/10.1134/s003602361114004x
124 rdf:type schema:CreativeWork
125 grid-institutes:None schema:alternateName Academy of Engineering Sciences, Presnenskii val. 17, 123557, Moscow, Russia
126 schema:name Academy of Engineering Sciences, Presnenskii val. 17, 123557, Moscow, Russia
127 Institute of Technical Glass, ul. Krzhizhanovskogo 29, 117218, Moscow, Russia
128 Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii pr. 31, 119991, Moscow, Russia
129 Lebedev Physical Institute, Russian Academy of Sciences, Leninskii pr. 53, 119991, Moscow, Russia
130 Moscow Institute of Physics and Technology, Institutskii per. 9, 141700, Dolgoprudnyi, Moscow Oblast, Russia
131 National Academy of Sciences of Armenia, Marshall Baghramian Avenue 24, 0019, Yerevan, Republic of Armenia
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...