Carbide Slag as a Calcium Source for Bauxite Residue Utilization via Calcification–Carbonization Processing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-04-30

AUTHORS

Yang Chen, Guozhi Lv, Ting-an Zhang, York R. Smith, Xi Chao

ABSTRACT

The calcification–carbonization method can effectively treat bauxite residue. In this paper, carbide slag is used as the calcium source of the calcification process to treat bauxite residue, which greatly reduces the process cost while realizing the utilization of two kinds of solid waste resources. Through the investigation of the influencing factors of the calcification process, we ascertained the optimal calcification condition is the calcium-to-silicon ratio of 2.5, calcification temperature of 160°C, the liquid-to-solid ratio of 5 : 1, and reaction duration of 60 min. Under this condition, a Na2O recovery rate of 94.7% was achieved, and the extraction rates of Al2O3 reach 33.9%. The main phase composition of tailings after treatment is CaCO3 and CaSiO4, which are environmentally harmless and can be reused as raw materials. On the other hand, using carbide slag to treat 1t bauxite residue can save 15.69$ of production cost, and the comprehensive economic benefit can reach 26.67$ per ton. Therefore, carbide slag is promising as a calcium source in the treatment of bauxite residue. More... »

PAGES

132-145

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1067821222020043

DOI

http://dx.doi.org/10.3103/s1067821222020043

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147505921


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0914", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Resources Engineering and Extractive Metallurgy", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China", 
          "id": "http://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "Key Laboratory of Ecological Metallurgy of Multi-Metal Intergrown Ores of Ministry of Education, 110819, Shenyang, Liaoning, China", 
            "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Yang", 
        "id": "sg:person.011462030047.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011462030047.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China", 
          "id": "http://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "Key Laboratory of Ecological Metallurgy of Multi-Metal Intergrown Ores of Ministry of Education, 110819, Shenyang, Liaoning, China", 
            "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lv", 
        "givenName": "Guozhi", 
        "id": "sg:person.0755172527.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755172527.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China", 
          "id": "http://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "Key Laboratory of Ecological Metallurgy of Multi-Metal Intergrown Ores of Ministry of Education, 110819, Shenyang, Liaoning, China", 
            "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Ting-an", 
        "id": "sg:person.012453100200.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012453100200.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Utah, 84112, Salt Lake City, UT, USA", 
          "id": "http://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "The University of Utah, 84112, Salt Lake City, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smith", 
        "givenName": "York R.", 
        "id": "sg:person.01346354147.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346354147.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China", 
          "id": "http://www.grid.ac/institutes/grid.412252.2", 
          "name": [
            "Key Laboratory of Ecological Metallurgy of Multi-Metal Intergrown Ores of Ministry of Education, 110819, Shenyang, Liaoning, China", 
            "School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chao", 
        "givenName": "Xi", 
        "id": "sg:person.013652351447.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013652351447.58"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11837-014-1090-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044037133", 
          "https://doi.org/10.1007/s11837-014-1090-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11771-012-0996-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033945195", 
          "https://doi.org/10.1007/s11771-012-0996-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/sj.cr.7290254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028707461", 
          "https://doi.org/10.1038/sj.cr.7290254"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-04-30", 
    "datePublishedReg": "2022-04-30", 
    "description": "The calcification\u2013carbonization method can effectively treat bauxite residue. In this paper, carbide slag is used as the calcium source of the calcification process to treat bauxite residue, which greatly reduces the process cost while realizing the utilization of two kinds of solid waste resources. Through the investigation of the influencing factors of the calcification process, we ascertained the optimal calcification condition is the calcium-to-silicon ratio of 2.5, calcification temperature of 160\u00b0C, the liquid-to-solid ratio of 5 : 1, and reaction duration of 60 min. Under this condition, a Na2O recovery rate of 94.7% was achieved, and the extraction rates of Al2O3 reach 33.9%. The main phase composition of tailings after treatment is CaCO3 and CaSiO4, which are environmentally harmless and can be reused as raw materials. On the other hand, using carbide slag to treat 1t bauxite residue can save 15.69$ of production cost, and the comprehensive economic benefit can reach 26.67$ per ton. Therefore, carbide slag is promising as a calcium source in the treatment of bauxite residue.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s1067821222020043", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8931963", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8381933", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8378670", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136044", 
        "issn": [
          "0021-3438", 
          "2412-8783"
        ], 
        "name": "Russian Journal of Non-Ferrous Metals", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "keywords": [
      "carbide slag", 
      "bauxite residue", 
      "calcification-carbonization method", 
      "main phase composition", 
      "solid waste resources", 
      "comprehensive economic benefits", 
      "solid ratio", 
      "slag", 
      "process cost", 
      "phase composition", 
      "silicon ratio", 
      "extraction rate", 
      "waste resources", 
      "raw materials", 
      "calcium source", 
      "production costs", 
      "reaction duration", 
      "residue utilization", 
      "CaSiO4", 
      "economic benefits", 
      "Al2O3", 
      "recovery rate", 
      "tailings", 
      "cost", 
      "temperature", 
      "liquid", 
      "materials", 
      "process", 
      "ratio", 
      "tons", 
      "conditions", 
      "CaCO3", 
      "source", 
      "utilization", 
      "processing", 
      "rate", 
      "method", 
      "investigation", 
      "composition", 
      "kind", 
      "min", 
      "hand", 
      "calcification process", 
      "resources", 
      "benefits", 
      "residues", 
      "factors", 
      "treatment", 
      "duration", 
      "calcium", 
      "calcification temperature", 
      "calcification conditions", 
      "paper"
    ], 
    "name": "Carbide Slag as a Calcium Source for Bauxite Residue Utilization via Calcification\u2013Carbonization Processing", 
    "pagination": "132-145", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147505921"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1067821222020043"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1067821222020043", 
      "https://app.dimensions.ai/details/publication/pub.1147505921"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_942.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s1067821222020043"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1067821222020043'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1067821222020043'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1067821222020043'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1067821222020043'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      22 PREDICATES      81 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1067821222020043 schema:about anzsrc-for:09
2 anzsrc-for:0914
3 schema:author Nd464825b1617459eaaf08bbc6a3e5868
4 schema:citation sg:pub.10.1007/s11771-012-0996-3
5 sg:pub.10.1007/s11837-014-1090-0
6 sg:pub.10.1038/sj.cr.7290254
7 schema:datePublished 2022-04-30
8 schema:datePublishedReg 2022-04-30
9 schema:description The calcification–carbonization method can effectively treat bauxite residue. In this paper, carbide slag is used as the calcium source of the calcification process to treat bauxite residue, which greatly reduces the process cost while realizing the utilization of two kinds of solid waste resources. Through the investigation of the influencing factors of the calcification process, we ascertained the optimal calcification condition is the calcium-to-silicon ratio of 2.5, calcification temperature of 160°C, the liquid-to-solid ratio of 5 : 1, and reaction duration of 60 min. Under this condition, a Na2O recovery rate of 94.7% was achieved, and the extraction rates of Al2O3 reach 33.9%. The main phase composition of tailings after treatment is CaCO3 and CaSiO4, which are environmentally harmless and can be reused as raw materials. On the other hand, using carbide slag to treat 1t bauxite residue can save 15.69$ of production cost, and the comprehensive economic benefit can reach 26.67$ per ton. Therefore, carbide slag is promising as a calcium source in the treatment of bauxite residue.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N8254fbc1ec4e485ebeb84229d0abbd3e
14 Nd724dadf6c424dfb87714796d33b0dbd
15 sg:journal.1136044
16 schema:keywords Al2O3
17 CaCO3
18 CaSiO4
19 bauxite residue
20 benefits
21 calcification conditions
22 calcification process
23 calcification temperature
24 calcification-carbonization method
25 calcium
26 calcium source
27 carbide slag
28 composition
29 comprehensive economic benefits
30 conditions
31 cost
32 duration
33 economic benefits
34 extraction rate
35 factors
36 hand
37 investigation
38 kind
39 liquid
40 main phase composition
41 materials
42 method
43 min
44 paper
45 phase composition
46 process
47 process cost
48 processing
49 production costs
50 rate
51 ratio
52 raw materials
53 reaction duration
54 recovery rate
55 residue utilization
56 residues
57 resources
58 silicon ratio
59 slag
60 solid ratio
61 solid waste resources
62 source
63 tailings
64 temperature
65 tons
66 treatment
67 utilization
68 waste resources
69 schema:name Carbide Slag as a Calcium Source for Bauxite Residue Utilization via Calcification–Carbonization Processing
70 schema:pagination 132-145
71 schema:productId N518dc043a5644decb1c80dc5f3e4b011
72 N66f9758c6d334e929413716151dbe2a7
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147505921
74 https://doi.org/10.3103/s1067821222020043
75 schema:sdDatePublished 2022-06-01T22:25
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N4da59d659bcf45998d9e3518419dd0aa
78 schema:url https://doi.org/10.3103/s1067821222020043
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N076bc0dcbe8645509a69337356f14032 rdf:first sg:person.012453100200.20
83 rdf:rest Nb928951829e34bc99573556a38d2cae6
84 N4da59d659bcf45998d9e3518419dd0aa schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N518dc043a5644decb1c80dc5f3e4b011 schema:name dimensions_id
87 schema:value pub.1147505921
88 rdf:type schema:PropertyValue
89 N66f9758c6d334e929413716151dbe2a7 schema:name doi
90 schema:value 10.3103/s1067821222020043
91 rdf:type schema:PropertyValue
92 N8254fbc1ec4e485ebeb84229d0abbd3e schema:issueNumber 2
93 rdf:type schema:PublicationIssue
94 Nb6f19310856341bdb5e8d5712489e28d rdf:first sg:person.013652351447.58
95 rdf:rest rdf:nil
96 Nb7fadb6c099d48498f9e14968484fd9e rdf:first sg:person.0755172527.16
97 rdf:rest N076bc0dcbe8645509a69337356f14032
98 Nb928951829e34bc99573556a38d2cae6 rdf:first sg:person.01346354147.93
99 rdf:rest Nb6f19310856341bdb5e8d5712489e28d
100 Nd464825b1617459eaaf08bbc6a3e5868 rdf:first sg:person.011462030047.10
101 rdf:rest Nb7fadb6c099d48498f9e14968484fd9e
102 Nd724dadf6c424dfb87714796d33b0dbd schema:volumeNumber 63
103 rdf:type schema:PublicationVolume
104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
105 schema:name Engineering
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0914 schema:inDefinedTermSet anzsrc-for:
108 schema:name Resources Engineering and Extractive Metallurgy
109 rdf:type schema:DefinedTerm
110 sg:grant.8378670 http://pending.schema.org/fundedItem sg:pub.10.3103/s1067821222020043
111 rdf:type schema:MonetaryGrant
112 sg:grant.8381933 http://pending.schema.org/fundedItem sg:pub.10.3103/s1067821222020043
113 rdf:type schema:MonetaryGrant
114 sg:grant.8931963 http://pending.schema.org/fundedItem sg:pub.10.3103/s1067821222020043
115 rdf:type schema:MonetaryGrant
116 sg:journal.1136044 schema:issn 0021-3438
117 2412-8783
118 schema:name Russian Journal of Non-Ferrous Metals
119 schema:publisher Allerton Press
120 rdf:type schema:Periodical
121 sg:person.011462030047.10 schema:affiliation grid-institutes:grid.412252.2
122 schema:familyName Chen
123 schema:givenName Yang
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011462030047.10
125 rdf:type schema:Person
126 sg:person.012453100200.20 schema:affiliation grid-institutes:grid.412252.2
127 schema:familyName Zhang
128 schema:givenName Ting-an
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012453100200.20
130 rdf:type schema:Person
131 sg:person.01346354147.93 schema:affiliation grid-institutes:grid.223827.e
132 schema:familyName Smith
133 schema:givenName York R.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346354147.93
135 rdf:type schema:Person
136 sg:person.013652351447.58 schema:affiliation grid-institutes:grid.412252.2
137 schema:familyName Chao
138 schema:givenName Xi
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013652351447.58
140 rdf:type schema:Person
141 sg:person.0755172527.16 schema:affiliation grid-institutes:grid.412252.2
142 schema:familyName Lv
143 schema:givenName Guozhi
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755172527.16
145 rdf:type schema:Person
146 sg:pub.10.1007/s11771-012-0996-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033945195
147 https://doi.org/10.1007/s11771-012-0996-3
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11837-014-1090-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044037133
150 https://doi.org/10.1007/s11837-014-1090-0
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/sj.cr.7290254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028707461
153 https://doi.org/10.1038/sj.cr.7290254
154 rdf:type schema:CreativeWork
155 grid-institutes:grid.223827.e schema:alternateName The University of Utah, 84112, Salt Lake City, UT, USA
156 schema:name The University of Utah, 84112, Salt Lake City, UT, USA
157 rdf:type schema:Organization
158 grid-institutes:grid.412252.2 schema:alternateName School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China
159 schema:name Key Laboratory of Ecological Metallurgy of Multi-Metal Intergrown Ores of Ministry of Education, 110819, Shenyang, Liaoning, China
160 School of Metallurgy, Northeastern University, 110819, Shenyang, Liaoning, China
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...