Influence of the Combined Radial Shear Rolling and Rotary Forging on the Deformation Mode of the Small-Diameter Rod Billet Made ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-05

AUTHORS

Ta Dinh Xuan, V. A. Sheremetyev, A. A. Kudryashova, S. P. Galkin, V. A. Andreev, S. D. Prokoshkin, V. Brailovski

ABSTRACT

This work is devoted to the finite-element modeling of the deformation mode of a small-diameter rod billet during pressure hot treatment in the combination of radial shear rolling (RSR) and rotary forging (RF). Modeling is performed using a rheological model of the Ti–6Al–4V titanium alloy using the QForm VX program. The combination of RSR for one passage of a billet 15 mm in diameter to a rod 12 mm in diameter and subsequent RF in 1, 2, and 3 passages with the formation of rods 11, 10, and 8 mm in diameter is modeled. The operation-by-operation accumulation of the plastic deformation in nonuniformity conditions of its distribution is taken into account. Intermediate and final plastic deformation fields, deformation rates, and average stresses are found. It is shown that the distribution of the plastic deformation after RSR has the pronounced gradient character with a minimal value (3 and larger) at the cross-section periphery and a minimal value (about 1) in the center. Due to this, RF, even with small reductions, leads to a substantial increase in uniformity of the deformation mode when compared with the billet after the same diameter after radial shear rolling only. In addition, residual tensile stresses decrease due to compressing stresses during RF. The direct experimental approval of the combined deformation method is performed for the promising Ti–Zr–Nb shape memory alloy of medical prescription when fabricating rods 7–8 mm in diameter under pilot production conditions. The results of modeling are qualitatively confirmed by the metallographic analysis. The prospects of a combination of RSR and RF for the development of industrial fabrication technologies of small-diameter rods with a high uniformity of finely dispersed structure are shown. More... »

PAGES

271-279

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1067821220030165

DOI

http://dx.doi.org/10.3103/s1067821220030165

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1129030958


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISiS\u201d, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISiS\u201d, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ta Dinh Xuan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISiS\u201d, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISiS\u201d, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sheremetyev", 
        "givenName": "V. A.", 
        "id": "sg:person.011117151472.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117151472.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISiS\u201d, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISiS\u201d, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudryashova", 
        "givenName": "A. A.", 
        "id": "sg:person.011723727334.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011723727334.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISiS\u201d, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISiS\u201d, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galkin", 
        "givenName": "S. P.", 
        "id": "sg:person.014413001377.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014413001377.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423921.f", 
          "name": [
            "MATEK-SMA Ltd, 117449, Moscow, Russia", 
            "Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andreev", 
        "givenName": "V. A.", 
        "id": "sg:person.011351073357.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011351073357.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Science and Technology \u201cMISiS\u201d, 119049, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35043.31", 
          "name": [
            "National University of Science and Technology \u201cMISiS\u201d, 119049, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prokoshkin", 
        "givenName": "S. D.", 
        "id": "sg:person.015352705675.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ecole de Technologie Sperieure, Montreal 1100, Notrie Dame, Canada", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Ecole de Technologie Sperieure, Montreal 1100, Notrie Dame, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brailovski", 
        "givenName": "V.", 
        "id": "sg:person.0756023647.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s40830-015-0022-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039790494", 
          "https://doi.org/10.1007/s40830-015-0022-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-7054-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029174715", 
          "https://doi.org/10.1007/s00170-015-7054-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11015-019-00793-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1115172674", 
          "https://doi.org/10.1007/s11015-019-00793-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0036029517100020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100622873", 
          "https://doi.org/10.1134/s0036029517100020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-30916-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016061226", 
          "https://doi.org/10.1007/978-3-642-30916-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-014-1283-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040437148", 
          "https://doi.org/10.1007/s11665-014-1283-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11015-018-0581-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100689369", 
          "https://doi.org/10.1007/s11015-018-0581-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12289-012-1099-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015300910", 
          "https://doi.org/10.1007/s12289-012-1099-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11015-018-0579-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100691760", 
          "https://doi.org/10.1007/s11015-018-0579-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x18010039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103164767", 
          "https://doi.org/10.1134/s0031918x18010039"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-05", 
    "datePublishedReg": "2020-05-01", 
    "description": "This work is devoted to the finite-element modeling of the deformation mode of a small-diameter rod billet during pressure hot treatment in the combination of radial shear rolling (RSR) and rotary forging (RF). Modeling is performed using a rheological model of the Ti\u20136Al\u20134V titanium alloy using the QForm VX program. The combination of RSR for one passage of a billet 15 mm in diameter to a rod 12 mm in diameter and subsequent RF in 1, 2, and 3 passages with the formation of rods 11, 10, and 8 mm in diameter is modeled. The operation-by-operation accumulation of the plastic deformation in nonuniformity conditions of its distribution is taken into account. Intermediate and final plastic deformation fields, deformation rates, and average stresses are found. It is shown that the distribution of the plastic deformation after RSR has the pronounced gradient character with a minimal value (3 and larger) at the cross-section periphery and a minimal value (about 1) in the center. Due to this, RF, even with small reductions, leads to a substantial increase in uniformity of the deformation mode when compared with the billet after the same diameter after radial shear rolling only. In addition, residual tensile stresses decrease due to compressing stresses during RF. The direct experimental approval of the combined deformation method is performed for the promising Ti\u2013Zr\u2013Nb shape memory alloy of medical prescription when fabricating rods 7\u20138 mm in diameter under pilot production conditions. The results of modeling are qualitatively confirmed by the metallographic analysis. The prospects of a combination of RSR and RF for the development of industrial fabrication technologies of small-diameter rods with a high uniformity of finely dispersed structure are shown.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s1067821220030165", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136044", 
        "issn": [
          "0021-3438", 
          "2412-8783"
        ], 
        "name": "Russian Journal of Non-Ferrous Metals", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "keywords": [
      "radial-shear rolling", 
      "rotary forging", 
      "deformation modes", 
      "shear rolling", 
      "titanium alloy", 
      "plastic deformation", 
      "Ti-6Al-4V titanium alloy", 
      "residual tensile stress", 
      "Nb shape memory alloy", 
      "finite element modeling", 
      "plastic deformation field", 
      "shape memory alloy", 
      "fabrication technology", 
      "metallographic analysis", 
      "tensile stress", 
      "memory alloy", 
      "small diameter rods", 
      "results of modeling", 
      "average stress", 
      "Ti-Zr", 
      "rheological model", 
      "deformation rate", 
      "billet", 
      "high uniformity", 
      "deformation method", 
      "deformation field", 
      "alloy", 
      "gradient character", 
      "experimental approval", 
      "rolling", 
      "same diameter", 
      "hot treatment", 
      "deformation", 
      "production conditions", 
      "uniformity", 
      "diameter", 
      "modeling", 
      "minimal value", 
      "forging", 
      "mode", 
      "rods", 
      "stress", 
      "Rotary", 
      "conditions", 
      "operation", 
      "distribution", 
      "technology", 
      "substantial increase", 
      "combination", 
      "field", 
      "small reduction", 
      "values", 
      "structure", 
      "influence", 
      "work", 
      "method", 
      "model", 
      "reduction", 
      "prospects", 
      "formation", 
      "account", 
      "results", 
      "passage", 
      "increase", 
      "addition", 
      "rate", 
      "analysis", 
      "development", 
      "center", 
      "periphery", 
      "character", 
      "accumulation", 
      "treatment", 
      "program", 
      "approval", 
      "prescription", 
      "medical prescription"
    ], 
    "name": "Influence of the Combined Radial Shear Rolling and Rotary Forging on the Deformation Mode of the Small-Diameter Rod Billet Made of Titanium Alloys", 
    "pagination": "271-279", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1129030958"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1067821220030165"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1067821220030165", 
      "https://app.dimensions.ai/details/publication/pub.1129030958"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_842.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s1067821220030165"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1067821220030165'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1067821220030165'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1067821220030165'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1067821220030165'


 

This table displays all metadata directly associated to this object as RDF triples.

222 TRIPLES      22 PREDICATES      113 URIs      95 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1067821220030165 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N11dab773d6bb4282ac49f34643389f5c
4 schema:citation sg:pub.10.1007/978-3-642-30916-8
5 sg:pub.10.1007/s00170-015-7054-x
6 sg:pub.10.1007/s11015-018-0579-0
7 sg:pub.10.1007/s11015-018-0581-6
8 sg:pub.10.1007/s11015-019-00793-z
9 sg:pub.10.1007/s11665-014-1283-2
10 sg:pub.10.1007/s12289-012-1099-2
11 sg:pub.10.1007/s40830-015-0022-3
12 sg:pub.10.1134/s0031918x18010039
13 sg:pub.10.1134/s0036029517100020
14 schema:datePublished 2020-05
15 schema:datePublishedReg 2020-05-01
16 schema:description This work is devoted to the finite-element modeling of the deformation mode of a small-diameter rod billet during pressure hot treatment in the combination of radial shear rolling (RSR) and rotary forging (RF). Modeling is performed using a rheological model of the Ti–6Al–4V titanium alloy using the QForm VX program. The combination of RSR for one passage of a billet 15 mm in diameter to a rod 12 mm in diameter and subsequent RF in 1, 2, and 3 passages with the formation of rods 11, 10, and 8 mm in diameter is modeled. The operation-by-operation accumulation of the plastic deformation in nonuniformity conditions of its distribution is taken into account. Intermediate and final plastic deformation fields, deformation rates, and average stresses are found. It is shown that the distribution of the plastic deformation after RSR has the pronounced gradient character with a minimal value (3 and larger) at the cross-section periphery and a minimal value (about 1) in the center. Due to this, RF, even with small reductions, leads to a substantial increase in uniformity of the deformation mode when compared with the billet after the same diameter after radial shear rolling only. In addition, residual tensile stresses decrease due to compressing stresses during RF. The direct experimental approval of the combined deformation method is performed for the promising Ti–Zr–Nb shape memory alloy of medical prescription when fabricating rods 7–8 mm in diameter under pilot production conditions. The results of modeling are qualitatively confirmed by the metallographic analysis. The prospects of a combination of RSR and RF for the development of industrial fabrication technologies of small-diameter rods with a high uniformity of finely dispersed structure are shown.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N5fb5022e0a6747ba976628a13d6183e8
21 N6e33b61484124a5ba6a424b2a7feece2
22 sg:journal.1136044
23 schema:keywords Nb shape memory alloy
24 Rotary
25 Ti-6Al-4V titanium alloy
26 Ti-Zr
27 account
28 accumulation
29 addition
30 alloy
31 analysis
32 approval
33 average stress
34 billet
35 center
36 character
37 combination
38 conditions
39 deformation
40 deformation field
41 deformation method
42 deformation modes
43 deformation rate
44 development
45 diameter
46 distribution
47 experimental approval
48 fabrication technology
49 field
50 finite element modeling
51 forging
52 formation
53 gradient character
54 high uniformity
55 hot treatment
56 increase
57 influence
58 medical prescription
59 memory alloy
60 metallographic analysis
61 method
62 minimal value
63 mode
64 model
65 modeling
66 operation
67 passage
68 periphery
69 plastic deformation
70 plastic deformation field
71 prescription
72 production conditions
73 program
74 prospects
75 radial-shear rolling
76 rate
77 reduction
78 residual tensile stress
79 results
80 results of modeling
81 rheological model
82 rods
83 rolling
84 rotary forging
85 same diameter
86 shape memory alloy
87 shear rolling
88 small diameter rods
89 small reduction
90 stress
91 structure
92 substantial increase
93 technology
94 tensile stress
95 titanium alloy
96 treatment
97 uniformity
98 values
99 work
100 schema:name Influence of the Combined Radial Shear Rolling and Rotary Forging on the Deformation Mode of the Small-Diameter Rod Billet Made of Titanium Alloys
101 schema:pagination 271-279
102 schema:productId N24090687f2994f6386f1160578c771c8
103 N947e8e3a397d4d8dbaacf5370aa3ed85
104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129030958
105 https://doi.org/10.3103/s1067821220030165
106 schema:sdDatePublished 2022-05-20T07:36
107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
108 schema:sdPublisher Nba888ceb65444e2781b33564481cb65a
109 schema:url https://doi.org/10.3103/s1067821220030165
110 sgo:license sg:explorer/license/
111 sgo:sdDataset articles
112 rdf:type schema:ScholarlyArticle
113 N0ba11d02876e41fea590fff7162de171 schema:affiliation grid-institutes:grid.35043.31
114 schema:familyName Ta Dinh Xuan
115 rdf:type schema:Person
116 N11dab773d6bb4282ac49f34643389f5c rdf:first N0ba11d02876e41fea590fff7162de171
117 rdf:rest Na53919476a41484fa762391698a26485
118 N24090687f2994f6386f1160578c771c8 schema:name doi
119 schema:value 10.3103/s1067821220030165
120 rdf:type schema:PropertyValue
121 N3a2343a07c374f47a40ced77b2262c22 rdf:first sg:person.014413001377.53
122 rdf:rest N5331401b2ff842aa8811b3e8048e1e65
123 N3bf55e9e7c8d4dd8924d106af8cbfe22 rdf:first sg:person.011723727334.17
124 rdf:rest N3a2343a07c374f47a40ced77b2262c22
125 N5331401b2ff842aa8811b3e8048e1e65 rdf:first sg:person.011351073357.04
126 rdf:rest Na7440f69888d44c9a4be12a8f3ad6485
127 N5fb5022e0a6747ba976628a13d6183e8 schema:volumeNumber 61
128 rdf:type schema:PublicationVolume
129 N6e33b61484124a5ba6a424b2a7feece2 schema:issueNumber 3
130 rdf:type schema:PublicationIssue
131 N947e8e3a397d4d8dbaacf5370aa3ed85 schema:name dimensions_id
132 schema:value pub.1129030958
133 rdf:type schema:PropertyValue
134 Na53919476a41484fa762391698a26485 rdf:first sg:person.011117151472.13
135 rdf:rest N3bf55e9e7c8d4dd8924d106af8cbfe22
136 Na7440f69888d44c9a4be12a8f3ad6485 rdf:first sg:person.015352705675.83
137 rdf:rest Nfc5c6d097b51416ea9e874fd1038fe4e
138 Nba888ceb65444e2781b33564481cb65a schema:name Springer Nature - SN SciGraph project
139 rdf:type schema:Organization
140 Nfc5c6d097b51416ea9e874fd1038fe4e rdf:first sg:person.0756023647.41
141 rdf:rest rdf:nil
142 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
143 schema:name Engineering
144 rdf:type schema:DefinedTerm
145 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
146 schema:name Materials Engineering
147 rdf:type schema:DefinedTerm
148 sg:journal.1136044 schema:issn 0021-3438
149 2412-8783
150 schema:name Russian Journal of Non-Ferrous Metals
151 schema:publisher Allerton Press
152 rdf:type schema:Periodical
153 sg:person.011117151472.13 schema:affiliation grid-institutes:grid.35043.31
154 schema:familyName Sheremetyev
155 schema:givenName V. A.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011117151472.13
157 rdf:type schema:Person
158 sg:person.011351073357.04 schema:affiliation grid-institutes:grid.423921.f
159 schema:familyName Andreev
160 schema:givenName V. A.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011351073357.04
162 rdf:type schema:Person
163 sg:person.011723727334.17 schema:affiliation grid-institutes:grid.35043.31
164 schema:familyName Kudryashova
165 schema:givenName A. A.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011723727334.17
167 rdf:type schema:Person
168 sg:person.014413001377.53 schema:affiliation grid-institutes:grid.35043.31
169 schema:familyName Galkin
170 schema:givenName S. P.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014413001377.53
172 rdf:type schema:Person
173 sg:person.015352705675.83 schema:affiliation grid-institutes:grid.35043.31
174 schema:familyName Prokoshkin
175 schema:givenName S. D.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015352705675.83
177 rdf:type schema:Person
178 sg:person.0756023647.41 schema:affiliation grid-institutes:None
179 schema:familyName Brailovski
180 schema:givenName V.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756023647.41
182 rdf:type schema:Person
183 sg:pub.10.1007/978-3-642-30916-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016061226
184 https://doi.org/10.1007/978-3-642-30916-8
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/s00170-015-7054-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029174715
187 https://doi.org/10.1007/s00170-015-7054-x
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/s11015-018-0579-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100691760
190 https://doi.org/10.1007/s11015-018-0579-0
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/s11015-018-0581-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100689369
193 https://doi.org/10.1007/s11015-018-0581-6
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/s11015-019-00793-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1115172674
196 https://doi.org/10.1007/s11015-019-00793-z
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/s11665-014-1283-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040437148
199 https://doi.org/10.1007/s11665-014-1283-2
200 rdf:type schema:CreativeWork
201 sg:pub.10.1007/s12289-012-1099-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015300910
202 https://doi.org/10.1007/s12289-012-1099-2
203 rdf:type schema:CreativeWork
204 sg:pub.10.1007/s40830-015-0022-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039790494
205 https://doi.org/10.1007/s40830-015-0022-3
206 rdf:type schema:CreativeWork
207 sg:pub.10.1134/s0031918x18010039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103164767
208 https://doi.org/10.1134/s0031918x18010039
209 rdf:type schema:CreativeWork
210 sg:pub.10.1134/s0036029517100020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100622873
211 https://doi.org/10.1134/s0036029517100020
212 rdf:type schema:CreativeWork
213 grid-institutes:None schema:alternateName Ecole de Technologie Sperieure, Montreal 1100, Notrie Dame, Canada
214 schema:name Ecole de Technologie Sperieure, Montreal 1100, Notrie Dame, Canada
215 rdf:type schema:Organization
216 grid-institutes:grid.35043.31 schema:alternateName National University of Science and Technology “MISiS”, 119049, Moscow, Russia
217 schema:name National University of Science and Technology “MISiS”, 119049, Moscow, Russia
218 rdf:type schema:Organization
219 grid-institutes:grid.423921.f schema:alternateName Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119991, Moscow, Russia
220 schema:name Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, 119991, Moscow, Russia
221 MATEK-SMA Ltd, 117449, Moscow, Russia
222 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...