Dynamics of phase formation during the synthesis of magnesium diboride from elements in thermal explosion mode View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

A. Yu. Potanin, E. A. Levashov, D. Yu. Kovalev

ABSTRACT

The influence of the heating rate of the Mg + 2B mixture on the dynamics of the phase formation during the thermal explosion in the helium medium is investigated by the time-resolved X-ray diffraction method. It is shown that the MgB2 phase appears without the formation of intermediate compounds. The presence of impurity oxygen is a substantial factor affecting the formation kinetics of MgB2. The oxide film on the surface of magnesium particles has no time to form with the heating rate of the charge mixture of 150–200°C/min. A result of this circumstance is the reaction diffusion mechanism of the Mg + 2B = MgB2 reaction immediately after the melting of magnesium. Synthesis products mainly consist of MgB2 and MgO traces at a level of 5%. The thermal explosion temperature is 1100°C. A comparatively thick oxide film which retards melt spreading and shifts the onset of the formation reaction of MgB2 by 8–9 s grows on the magnesium surface at a heating rate of 30–50°C/min. Synthesis products contain MgB2 and up to 15% MgO. The thermal explosion temperature is 1020°C in this case. More... »

PAGES

396-404

References to SciGraph publications

  • 2014-11. Thermal explosion synthesis of a magnesium diboride powder in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 2003-10. Band structure and properties of superconducting MgB2 and related compounds (A review) in PHYSICS OF THE SOLID STATE
  • 2002-01. Volume Combustion Modes in Heterogeneous Reaction Systems in JOURNAL OF MATERIALS SYNTHESIS AND PROCESSING
  • 2007-12. Structural characterization and superconducting properties of MgB2 prepared by SHS-method in INTERNATIONAL JOURNAL OF SELF-PROPAGATING HIGH-TEMPERATURE SYNTHESIS
  • 2000-08. Programs for X-ray analysis of polycrystals in METAL SCIENCE AND HEAT TREATMENT
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.3103/s1067821217040150

    DOI

    http://dx.doi.org/10.3103/s1067821217040150

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091498766


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.35043.31", 
              "name": [
                "National University of Science and Technology \u201cMISiS\u201d, 119049, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Potanin", 
            "givenName": "A. Yu.", 
            "id": "sg:person.014203451236.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203451236.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Science and Technology", 
              "id": "https://www.grid.ac/institutes/grid.35043.31", 
              "name": [
                "National University of Science and Technology \u201cMISiS\u201d, 119049, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Levashov", 
            "givenName": "E. A.", 
            "id": "sg:person.010111373705.67", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010111373705.67"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Institute of Structural Macrokinetics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kovalev", 
            "givenName": "D. Yu.", 
            "id": "sg:person.07775147503.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07775147503.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.physc.2004.11.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002955089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physb.2009.10.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008304040"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0953-8984/13/35/101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023277727"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021096812808", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025621825", 
              "https://doi.org/10.1023/a:1021096812808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02471306", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026231946", 
              "https://doi.org/10.1007/bf02471306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-4534(03)00661-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029482685"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2320/matertrans.47.1347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029521988"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0010508214060057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033620185", 
              "https://doi.org/10.1134/s0010508214060057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ceramint.2015.03.146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038969745"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s1061386207040061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040184511", 
              "https://doi.org/10.3103/s1061386207040061"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jeurceramsoc.2004.09.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041210454"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/1.1620085", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043358781", 
              "https://doi.org/10.1134/1.1620085"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physc.2007.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052350502"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1009-1963/14/11/030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059129083"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-07", 
        "datePublishedReg": "2017-07-01", 
        "description": "The influence of the heating rate of the Mg + 2B mixture on the dynamics of the phase formation during the thermal explosion in the helium medium is investigated by the time-resolved X-ray diffraction method. It is shown that the MgB2 phase appears without the formation of intermediate compounds. The presence of impurity oxygen is a substantial factor affecting the formation kinetics of MgB2. The oxide film on the surface of magnesium particles has no time to form with the heating rate of the charge mixture of 150\u2013200\u00b0C/min. A result of this circumstance is the reaction diffusion mechanism of the Mg + 2B = MgB2 reaction immediately after the melting of magnesium. Synthesis products mainly consist of MgB2 and MgO traces at a level of 5%. The thermal explosion temperature is 1100\u00b0C. A comparatively thick oxide film which retards melt spreading and shifts the onset of the formation reaction of MgB2 by 8\u20139 s grows on the magnesium surface at a heating rate of 30\u201350\u00b0C/min. Synthesis products contain MgB2 and up to 15% MgO. The thermal explosion temperature is 1020\u00b0C in this case.", 
        "genre": "research_article", 
        "id": "sg:pub.10.3103/s1067821217040150", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136044", 
            "issn": [
              "1067-8212", 
              "1934-970X"
            ], 
            "name": "Russian Journal of Non-Ferrous Metals", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "58"
          }
        ], 
        "name": "Dynamics of phase formation during the synthesis of magnesium diboride from elements in thermal explosion mode", 
        "pagination": "396-404", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "9ee48347333d2086f1cd47b0693afc230bc9e3863d564213153231099fe9a051"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.3103/s1067821217040150"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091498766"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.3103/s1067821217040150", 
          "https://app.dimensions.ai/details/publication/pub.1091498766"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000509.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.3103%2FS1067821217040150"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1067821217040150'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1067821217040150'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1067821217040150'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1067821217040150'


     

    This table displays all metadata directly associated to this object as RDF triples.

    125 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.3103/s1067821217040150 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Na4a7da7690f049edb4f7d4bf91c04f7c
    4 schema:citation sg:pub.10.1007/bf02471306
    5 sg:pub.10.1023/a:1021096812808
    6 sg:pub.10.1134/1.1620085
    7 sg:pub.10.1134/s0010508214060057
    8 sg:pub.10.3103/s1061386207040061
    9 https://doi.org/10.1016/j.ceramint.2015.03.146
    10 https://doi.org/10.1016/j.jeurceramsoc.2004.09.009
    11 https://doi.org/10.1016/j.physb.2009.10.001
    12 https://doi.org/10.1016/j.physc.2004.11.016
    13 https://doi.org/10.1016/j.physc.2007.01.005
    14 https://doi.org/10.1016/s0921-4534(03)00661-0
    15 https://doi.org/10.1088/0953-8984/13/35/101
    16 https://doi.org/10.1088/1009-1963/14/11/030
    17 https://doi.org/10.2320/matertrans.47.1347
    18 schema:datePublished 2017-07
    19 schema:datePublishedReg 2017-07-01
    20 schema:description The influence of the heating rate of the Mg + 2B mixture on the dynamics of the phase formation during the thermal explosion in the helium medium is investigated by the time-resolved X-ray diffraction method. It is shown that the MgB2 phase appears without the formation of intermediate compounds. The presence of impurity oxygen is a substantial factor affecting the formation kinetics of MgB2. The oxide film on the surface of magnesium particles has no time to form with the heating rate of the charge mixture of 150–200°C/min. A result of this circumstance is the reaction diffusion mechanism of the Mg + 2B = MgB2 reaction immediately after the melting of magnesium. Synthesis products mainly consist of MgB2 and MgO traces at a level of 5%. The thermal explosion temperature is 1100°C. A comparatively thick oxide film which retards melt spreading and shifts the onset of the formation reaction of MgB2 by 8–9 s grows on the magnesium surface at a heating rate of 30–50°C/min. Synthesis products contain MgB2 and up to 15% MgO. The thermal explosion temperature is 1020°C in this case.
    21 schema:genre research_article
    22 schema:inLanguage en
    23 schema:isAccessibleForFree false
    24 schema:isPartOf N6d0dbfa6325f461f9fc6586f2be518b2
    25 Neb210e3c13b340019ba88fa86e62637a
    26 sg:journal.1136044
    27 schema:name Dynamics of phase formation during the synthesis of magnesium diboride from elements in thermal explosion mode
    28 schema:pagination 396-404
    29 schema:productId N8db6fbbdd1ce41d491e9d1be6950a465
    30 Ne72b2ea0eaea43cbb908fb04d83367a5
    31 Nf8aa2cf93e544abeb0bfd640b4bba80d
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091498766
    33 https://doi.org/10.3103/s1067821217040150
    34 schema:sdDatePublished 2019-04-11T00:15
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N15cd90c0f58340ef9a8c0090d6239ca6
    37 schema:url http://link.springer.com/10.3103%2FS1067821217040150
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N15cd90c0f58340ef9a8c0090d6239ca6 schema:name Springer Nature - SN SciGraph project
    42 rdf:type schema:Organization
    43 N63577166bb504bc18671fd40391194d4 rdf:first sg:person.07775147503.07
    44 rdf:rest rdf:nil
    45 N6b1df477bf3a4523ab2fb88b1a1993ce rdf:first sg:person.010111373705.67
    46 rdf:rest N63577166bb504bc18671fd40391194d4
    47 N6d0dbfa6325f461f9fc6586f2be518b2 schema:issueNumber 4
    48 rdf:type schema:PublicationIssue
    49 N8db6fbbdd1ce41d491e9d1be6950a465 schema:name readcube_id
    50 schema:value 9ee48347333d2086f1cd47b0693afc230bc9e3863d564213153231099fe9a051
    51 rdf:type schema:PropertyValue
    52 Na4a7da7690f049edb4f7d4bf91c04f7c rdf:first sg:person.014203451236.16
    53 rdf:rest N6b1df477bf3a4523ab2fb88b1a1993ce
    54 Ne72b2ea0eaea43cbb908fb04d83367a5 schema:name doi
    55 schema:value 10.3103/s1067821217040150
    56 rdf:type schema:PropertyValue
    57 Neb210e3c13b340019ba88fa86e62637a schema:volumeNumber 58
    58 rdf:type schema:PublicationVolume
    59 Nf8aa2cf93e544abeb0bfd640b4bba80d schema:name dimensions_id
    60 schema:value pub.1091498766
    61 rdf:type schema:PropertyValue
    62 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Engineering
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Materials Engineering
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1136044 schema:issn 1067-8212
    69 1934-970X
    70 schema:name Russian Journal of Non-Ferrous Metals
    71 rdf:type schema:Periodical
    72 sg:person.010111373705.67 schema:affiliation https://www.grid.ac/institutes/grid.35043.31
    73 schema:familyName Levashov
    74 schema:givenName E. A.
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010111373705.67
    76 rdf:type schema:Person
    77 sg:person.014203451236.16 schema:affiliation https://www.grid.ac/institutes/grid.35043.31
    78 schema:familyName Potanin
    79 schema:givenName A. Yu.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014203451236.16
    81 rdf:type schema:Person
    82 sg:person.07775147503.07 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    83 schema:familyName Kovalev
    84 schema:givenName D. Yu.
    85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07775147503.07
    86 rdf:type schema:Person
    87 sg:pub.10.1007/bf02471306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026231946
    88 https://doi.org/10.1007/bf02471306
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1023/a:1021096812808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025621825
    91 https://doi.org/10.1023/a:1021096812808
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1134/1.1620085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043358781
    94 https://doi.org/10.1134/1.1620085
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1134/s0010508214060057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033620185
    97 https://doi.org/10.1134/s0010508214060057
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.3103/s1061386207040061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040184511
    100 https://doi.org/10.3103/s1061386207040061
    101 rdf:type schema:CreativeWork
    102 https://doi.org/10.1016/j.ceramint.2015.03.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038969745
    103 rdf:type schema:CreativeWork
    104 https://doi.org/10.1016/j.jeurceramsoc.2004.09.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041210454
    105 rdf:type schema:CreativeWork
    106 https://doi.org/10.1016/j.physb.2009.10.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008304040
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.physc.2004.11.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002955089
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.physc.2007.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052350502
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/s0921-4534(03)00661-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029482685
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1088/0953-8984/13/35/101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023277727
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1088/1009-1963/14/11/030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059129083
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.2320/matertrans.47.1347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029521988
    119 rdf:type schema:CreativeWork
    120 https://www.grid.ac/institutes/grid.35043.31 schema:alternateName National University of Science and Technology
    121 schema:name National University of Science and Technology “MISiS”, 119049, Moscow, Russia
    122 rdf:type schema:Organization
    123 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    124 schema:name Institute of Structural Macrokinetics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
    125 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...