Nonautonomous Bounded Remainder Sets View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

A. V. Shutov

ABSTRACT

Nonautonomous bounded remainder sets are sequences of sets that admit a uniform estimation of the remainder term in the distribution of fractional parts of a linear function. In this paper, we give a complete description of nonautonomous bounded remainder sets in the case of periodic sequences. The result is also extended to certain classes of quasiperiodic sequences of sets. Our proofs are based on obtaining explicit formulas for the remainder term by using sums of fractional parts. This method is effective, i.e., it allows us to explicitly estimate the remainder term. More... »

PAGES

81-87

References to SciGraph publications

Journal

TITLE

Russian Mathematics

ISSUE

12

VOLUME

62

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1066369x18120071

DOI

http://dx.doi.org/10.3103/s1066369x18120071

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110658783


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute", 
          "id": "https://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shutov", 
        "givenName": "A. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02761417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016737291", 
          "https://doi.org/10.1007/bf02761417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01475864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026414633", 
          "https://doi.org/10.1007/bf01475864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02940580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040522935", 
          "https://doi.org/10.1007/bf02940580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnt.2011.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041245432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jnth.1997.2080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043618747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/2371431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069898148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/mzm5266", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072368114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/aa-12-2-193-212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091797945"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-12", 
    "datePublishedReg": "2018-12-01", 
    "description": "Nonautonomous bounded remainder sets are sequences of sets that admit a uniform estimation of the remainder term in the distribution of fractional parts of a linear function. In this paper, we give a complete description of nonautonomous bounded remainder sets in the case of periodic sequences. The result is also extended to certain classes of quasiperiodic sequences of sets. Our proofs are based on obtaining explicit formulas for the remainder term by using sums of fractional parts. This method is effective, i.e., it allows us to explicitly estimate the remainder term.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s1066369x18120071", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295492", 
        "issn": [
          "0021-3446", 
          "1934-810X"
        ], 
        "name": "Russian Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "Nonautonomous Bounded Remainder Sets", 
    "pagination": "81-87", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fa20e89abaa42f01369a2a48ac19449d214de2ec4220fe861b24aafb018183e4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1066369x18120071"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110658783"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1066369x18120071", 
      "https://app.dimensions.ai/details/publication/pub.1110658783"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000296_0000000296/records_57213_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS1066369X18120071"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18120071'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18120071'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18120071'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18120071'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1066369x18120071 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N486c16aceaff4fd89ac8f293475f892d
4 schema:citation sg:pub.10.1007/bf01475864
5 sg:pub.10.1007/bf02761417
6 sg:pub.10.1007/bf02940580
7 https://doi.org/10.1006/jnth.1997.2080
8 https://doi.org/10.1016/j.jnt.2011.01.016
9 https://doi.org/10.2307/2371431
10 https://doi.org/10.4064/aa-12-2-193-212
11 https://doi.org/10.4213/mzm5266
12 schema:datePublished 2018-12
13 schema:datePublishedReg 2018-12-01
14 schema:description Nonautonomous bounded remainder sets are sequences of sets that admit a uniform estimation of the remainder term in the distribution of fractional parts of a linear function. In this paper, we give a complete description of nonautonomous bounded remainder sets in the case of periodic sequences. The result is also extended to certain classes of quasiperiodic sequences of sets. Our proofs are based on obtaining explicit formulas for the remainder term by using sums of fractional parts. This method is effective, i.e., it allows us to explicitly estimate the remainder term.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N8b5cd4eb194a48fe9c460a071e7cd1b1
19 Ne8afad608d844bd0b966afb1928aa8d8
20 sg:journal.1295492
21 schema:name Nonautonomous Bounded Remainder Sets
22 schema:pagination 81-87
23 schema:productId N075f09bba49d4ba7a55ec3bbc3e42794
24 N5d55bf6b16234cc99dc1fe6b66576bee
25 Nd94f549c88b04b358dc014718bf49545
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110658783
27 https://doi.org/10.3103/s1066369x18120071
28 schema:sdDatePublished 2019-04-11T08:24
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N25316a3de9df490fb15c9a6e07b5afb2
31 schema:url https://link.springer.com/10.3103%2FS1066369X18120071
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N075f09bba49d4ba7a55ec3bbc3e42794 schema:name doi
36 schema:value 10.3103/s1066369x18120071
37 rdf:type schema:PropertyValue
38 N25316a3de9df490fb15c9a6e07b5afb2 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 N486c16aceaff4fd89ac8f293475f892d rdf:first N755d4d312b244e039a06f3ea98f63b63
41 rdf:rest rdf:nil
42 N5d55bf6b16234cc99dc1fe6b66576bee schema:name dimensions_id
43 schema:value pub.1110658783
44 rdf:type schema:PropertyValue
45 N755d4d312b244e039a06f3ea98f63b63 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
46 schema:familyName Shutov
47 schema:givenName A. V.
48 rdf:type schema:Person
49 N8b5cd4eb194a48fe9c460a071e7cd1b1 schema:issueNumber 12
50 rdf:type schema:PublicationIssue
51 Nd94f549c88b04b358dc014718bf49545 schema:name readcube_id
52 schema:value fa20e89abaa42f01369a2a48ac19449d214de2ec4220fe861b24aafb018183e4
53 rdf:type schema:PropertyValue
54 Ne8afad608d844bd0b966afb1928aa8d8 schema:volumeNumber 62
55 rdf:type schema:PublicationVolume
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
60 schema:name Statistics
61 rdf:type schema:DefinedTerm
62 sg:journal.1295492 schema:issn 0021-3446
63 1934-810X
64 schema:name Russian Mathematics
65 rdf:type schema:Periodical
66 sg:pub.10.1007/bf01475864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026414633
67 https://doi.org/10.1007/bf01475864
68 rdf:type schema:CreativeWork
69 sg:pub.10.1007/bf02761417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016737291
70 https://doi.org/10.1007/bf02761417
71 rdf:type schema:CreativeWork
72 sg:pub.10.1007/bf02940580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040522935
73 https://doi.org/10.1007/bf02940580
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1006/jnth.1997.2080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043618747
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1016/j.jnt.2011.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041245432
78 rdf:type schema:CreativeWork
79 https://doi.org/10.2307/2371431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069898148
80 rdf:type schema:CreativeWork
81 https://doi.org/10.4064/aa-12-2-193-212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091797945
82 rdf:type schema:CreativeWork
83 https://doi.org/10.4213/mzm5266 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072368114
84 rdf:type schema:CreativeWork
85 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
86 schema:name Steklov Mathematical Institute of Russian Academy of Sciences, ul. Gubkina 8, 119991, Moscow, Russia
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...