On Analytic Periodic Solutions to Nonlinear Differential Equations With Delay (Advance) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

A. A. Kosov, E. I. Semenov

ABSTRACT

We study a system of the reaction–diffusion type, where diffusion coefficients depend in an arbitrary way on spatial variables and concentrations, while reactions are expressed as homogeneous functions whose coefficients depend in a special way on spatial variables. We prove that the system has a family of exact solutions that are expressed through solutions to a system of ordinary differential equations (ODE) with homogeneous functions in right-hand sides. For a special case of theODE systemwe construct a general solution represented by Jacobi higher transcendental functions. We also prove that these periodic solutions are analytic functions that can be expressed near each point on the period by convergent power series. More... »

PAGES

30-36

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1066369x18100043

DOI

http://dx.doi.org/10.3103/s1066369x18100043

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107297285


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Siberian Branch of the Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, ul. Lermontova 134, 664033, Irkutsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kosov", 
        "givenName": "A. A.", 
        "id": "sg:person.013152167671.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013152167671.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siberian Branch of the Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, ul. Lermontova 134, 664033, Irkutsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semenov", 
        "givenName": "E. I.", 
        "id": "sg:person.015434001371.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015434001371.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmaa.2010.02.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000015125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1066369x08070074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014915302", 
          "https://doi.org/10.3103/s1066369x08070074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2004.10.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039298306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.18255/1818-1015-2016-3-342-348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068592167"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "We study a system of the reaction\u2013diffusion type, where diffusion coefficients depend in an arbitrary way on spatial variables and concentrations, while reactions are expressed as homogeneous functions whose coefficients depend in a special way on spatial variables. We prove that the system has a family of exact solutions that are expressed through solutions to a system of ordinary differential equations (ODE) with homogeneous functions in right-hand sides. For a special case of theODE systemwe construct a general solution represented by Jacobi higher transcendental functions. We also prove that these periodic solutions are analytic functions that can be expressed near each point on the period by convergent power series.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s1066369x18100043", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295492", 
        "issn": [
          "0021-3446", 
          "1934-810X"
        ], 
        "name": "Russian Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "On Analytic Periodic Solutions to Nonlinear Differential Equations With Delay (Advance)", 
    "pagination": "30-36", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3af9efdc155ddf9d498b02162f5077968cc5b248c3c5f967262e6b5a1cf8c23a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1066369x18100043"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107297285"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1066369x18100043", 
      "https://app.dimensions.ai/details/publication/pub.1107297285"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000541.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.3103%2FS1066369X18100043"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18100043'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18100043'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18100043'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18100043'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1066369x18100043 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndbd2a855e9d3426fa9776b7146290fc2
4 schema:citation sg:pub.10.3103/s1066369x08070074
5 https://doi.org/10.1016/j.jmaa.2004.10.034
6 https://doi.org/10.1016/j.jmaa.2010.02.035
7 https://doi.org/10.18255/1818-1015-2016-3-342-348
8 schema:datePublished 2018-10
9 schema:datePublishedReg 2018-10-01
10 schema:description We study a system of the reaction–diffusion type, where diffusion coefficients depend in an arbitrary way on spatial variables and concentrations, while reactions are expressed as homogeneous functions whose coefficients depend in a special way on spatial variables. We prove that the system has a family of exact solutions that are expressed through solutions to a system of ordinary differential equations (ODE) with homogeneous functions in right-hand sides. For a special case of theODE systemwe construct a general solution represented by Jacobi higher transcendental functions. We also prove that these periodic solutions are analytic functions that can be expressed near each point on the period by convergent power series.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N3f42e93aef1a46609fb1af8ff8c010a6
15 N8eb6d0f0ed42477e883e47b33a7ff818
16 sg:journal.1295492
17 schema:name On Analytic Periodic Solutions to Nonlinear Differential Equations With Delay (Advance)
18 schema:pagination 30-36
19 schema:productId N4cd4d2568b9449e7a02d1da4fa7bc416
20 N7a7280698a3e4ada8d3d8f0c344eeb6e
21 Na692b30e5776403bb4d12122fbb2c962
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107297285
23 https://doi.org/10.3103/s1066369x18100043
24 schema:sdDatePublished 2019-04-10T20:52
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N4927ef2b19bd465f951b01ce4601672d
27 schema:url https://link.springer.com/10.3103%2FS1066369X18100043
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N31e006beebb74cc8b02b7803d145cb64 rdf:first sg:person.015434001371.47
32 rdf:rest rdf:nil
33 N3f42e93aef1a46609fb1af8ff8c010a6 schema:issueNumber 10
34 rdf:type schema:PublicationIssue
35 N4927ef2b19bd465f951b01ce4601672d schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N4cd4d2568b9449e7a02d1da4fa7bc416 schema:name readcube_id
38 schema:value 3af9efdc155ddf9d498b02162f5077968cc5b248c3c5f967262e6b5a1cf8c23a
39 rdf:type schema:PropertyValue
40 N7a7280698a3e4ada8d3d8f0c344eeb6e schema:name dimensions_id
41 schema:value pub.1107297285
42 rdf:type schema:PropertyValue
43 N8eb6d0f0ed42477e883e47b33a7ff818 schema:volumeNumber 62
44 rdf:type schema:PublicationVolume
45 Na692b30e5776403bb4d12122fbb2c962 schema:name doi
46 schema:value 10.3103/s1066369x18100043
47 rdf:type schema:PropertyValue
48 Ndbd2a855e9d3426fa9776b7146290fc2 rdf:first sg:person.013152167671.37
49 rdf:rest N31e006beebb74cc8b02b7803d145cb64
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
54 schema:name Pure Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1295492 schema:issn 0021-3446
57 1934-810X
58 schema:name Russian Mathematics
59 rdf:type schema:Periodical
60 sg:person.013152167671.37 schema:affiliation https://www.grid.ac/institutes/grid.415877.8
61 schema:familyName Kosov
62 schema:givenName A. A.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013152167671.37
64 rdf:type schema:Person
65 sg:person.015434001371.47 schema:affiliation https://www.grid.ac/institutes/grid.415877.8
66 schema:familyName Semenov
67 schema:givenName E. I.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015434001371.47
69 rdf:type schema:Person
70 sg:pub.10.3103/s1066369x08070074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014915302
71 https://doi.org/10.3103/s1066369x08070074
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/j.jmaa.2004.10.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039298306
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1016/j.jmaa.2010.02.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000015125
76 rdf:type schema:CreativeWork
77 https://doi.org/10.18255/1818-1015-2016-3-342-348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068592167
78 rdf:type schema:CreativeWork
79 https://www.grid.ac/institutes/grid.415877.8 schema:alternateName Siberian Branch of the Russian Academy of Sciences
80 schema:name Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of Russian Academy of Sciences, ul. Lermontova 134, 664033, Irkutsk, Russia
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...