A Criterion of Convergence of Lagrange–Sturm–Liouville Processes in Terms of One-Sided Module of Variation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08

AUTHORS

A. Yu. Trynin

ABSTRACT

We obtain a criterion of uniform convergence inside the interval (0, π) of interpolation processes determined by eigenfunctions of the regular Sturm–Liouville problem with a continuous potential of bounded variation. The criterion is formulated in terms of one-sided modulus of variation.

PAGES

51-63

Journal

TITLE

Russian Mathematics

ISSUE

8

VOLUME

62

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1066369x1808008x

DOI

http://dx.doi.org/10.3103/s1066369x1808008x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105773694


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Saratov State University", 
          "id": "https://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "Saratov State University, ul. Astrakhanskaya 83, 410012, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Trynin", 
        "givenName": "A. Yu.", 
        "id": "sg:person.014016532332.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014016532332.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3103/s1066369x10110071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033027896", 
          "https://doi.org/10.3103/s1066369x10110071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1066369x10110071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033027896", 
          "https://doi.org/10.3103/s1066369x10110071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10092-013-0095-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045827872", 
          "https://doi.org/10.1007/s10092-013-0095-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/dema-2016-0005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051113526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/rm1998v053n06abeh000089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058197106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm2007v198n10abeh003894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058202373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm2009v200n11abeh004054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058202517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm2009v200n11abeh004054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058202517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1070/sm2013v204n03abeh004302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058202748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/100806904", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062859328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/110825947", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062864674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.13108/2013-5-4-112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064990411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17706/ijapm.2016.6.3.120-128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068441898"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "We obtain a criterion of uniform convergence inside the interval (0, \u03c0) of interpolation processes determined by eigenfunctions of the regular Sturm\u2013Liouville problem with a continuous potential of bounded variation. The criterion is formulated in terms of one-sided modulus of variation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s1066369x1808008x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295492", 
        "issn": [
          "0021-3446", 
          "1934-810X"
        ], 
        "name": "Russian Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "A Criterion of Convergence of Lagrange\u2013Sturm\u2013Liouville Processes in Terms of One-Sided Module of Variation", 
    "pagination": "51-63", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "49a082fbe7c87bb44d0d826a4a735bc3d84a43d41aa35c939ab91f95f8f61d7d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1066369x1808008x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105773694"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1066369x1808008x", 
      "https://app.dimensions.ai/details/publication/pub.1105773694"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000539.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3103%2FS1066369X1808008X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1066369x1808008x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1066369x1808008x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1066369x1808008x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1066369x1808008x'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      20 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1066369x1808008x schema:author N54678d5ec4f84545af7c0f31c1221085
2 schema:citation sg:pub.10.1007/s10092-013-0095-3
3 sg:pub.10.3103/s1066369x10110071
4 https://doi.org/10.1070/rm1998v053n06abeh000089
5 https://doi.org/10.1070/sm2007v198n10abeh003894
6 https://doi.org/10.1070/sm2009v200n11abeh004054
7 https://doi.org/10.1070/sm2013v204n03abeh004302
8 https://doi.org/10.1137/100806904
9 https://doi.org/10.1137/110825947
10 https://doi.org/10.13108/2013-5-4-112
11 https://doi.org/10.1515/dema-2016-0005
12 https://doi.org/10.17706/ijapm.2016.6.3.120-128
13 schema:datePublished 2018-08
14 schema:datePublishedReg 2018-08-01
15 schema:description We obtain a criterion of uniform convergence inside the interval (0, π) of interpolation processes determined by eigenfunctions of the regular Sturm–Liouville problem with a continuous potential of bounded variation. The criterion is formulated in terms of one-sided modulus of variation.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N27fe61f2d1214d8485c5b1b0d4a77069
20 Nd21a3037bdbb4ea09024d18dc6bfb0bb
21 sg:journal.1295492
22 schema:name A Criterion of Convergence of Lagrange–Sturm–Liouville Processes in Terms of One-Sided Module of Variation
23 schema:pagination 51-63
24 schema:productId N0ab80993b9cb4f52a32efa6d87f39ce3
25 N735ee030000c4b7ba512b3b0c31677aa
26 Nd1b1c6f45cde4c92b973a10d4b3f25a4
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105773694
28 https://doi.org/10.3103/s1066369x1808008x
29 schema:sdDatePublished 2019-04-10T18:25
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N0b8423b6d53d4ab3b9e472d18a390e8a
32 schema:url http://link.springer.com/10.3103%2FS1066369X1808008X
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N0ab80993b9cb4f52a32efa6d87f39ce3 schema:name readcube_id
37 schema:value 49a082fbe7c87bb44d0d826a4a735bc3d84a43d41aa35c939ab91f95f8f61d7d
38 rdf:type schema:PropertyValue
39 N0b8423b6d53d4ab3b9e472d18a390e8a schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N27fe61f2d1214d8485c5b1b0d4a77069 schema:volumeNumber 62
42 rdf:type schema:PublicationVolume
43 N54678d5ec4f84545af7c0f31c1221085 rdf:first sg:person.014016532332.14
44 rdf:rest rdf:nil
45 N735ee030000c4b7ba512b3b0c31677aa schema:name dimensions_id
46 schema:value pub.1105773694
47 rdf:type schema:PropertyValue
48 Nd1b1c6f45cde4c92b973a10d4b3f25a4 schema:name doi
49 schema:value 10.3103/s1066369x1808008x
50 rdf:type schema:PropertyValue
51 Nd21a3037bdbb4ea09024d18dc6bfb0bb schema:issueNumber 8
52 rdf:type schema:PublicationIssue
53 sg:journal.1295492 schema:issn 0021-3446
54 1934-810X
55 schema:name Russian Mathematics
56 rdf:type schema:Periodical
57 sg:person.014016532332.14 schema:affiliation https://www.grid.ac/institutes/grid.446088.6
58 schema:familyName Trynin
59 schema:givenName A. Yu.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014016532332.14
61 rdf:type schema:Person
62 sg:pub.10.1007/s10092-013-0095-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045827872
63 https://doi.org/10.1007/s10092-013-0095-3
64 rdf:type schema:CreativeWork
65 sg:pub.10.3103/s1066369x10110071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033027896
66 https://doi.org/10.3103/s1066369x10110071
67 rdf:type schema:CreativeWork
68 https://doi.org/10.1070/rm1998v053n06abeh000089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058197106
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1070/sm2007v198n10abeh003894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058202373
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1070/sm2009v200n11abeh004054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058202517
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1070/sm2013v204n03abeh004302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058202748
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1137/100806904 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062859328
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1137/110825947 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062864674
79 rdf:type schema:CreativeWork
80 https://doi.org/10.13108/2013-5-4-112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064990411
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1515/dema-2016-0005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051113526
83 rdf:type schema:CreativeWork
84 https://doi.org/10.17706/ijapm.2016.6.3.120-128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068441898
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.446088.6 schema:alternateName Saratov State University
87 schema:name Saratov State University, ul. Astrakhanskaya 83, 410012, Saratov, Russia
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...