On Geodesic Curves on Quotient Manifold of Nondegenerate Affinor Fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08

AUTHORS

E. M. Romanova

ABSTRACT

We consider the quotient manifold of the manifold of nondegenerate affinor fields on a compact manifold with respect to the action of the group of nowhere vanishing functions. This manifold is endowed with a structure of infinite-dimensional Lie group. On this Lie group, we construct an object of linear connection with respect to which all left-invariant vector fields are covariantly constant (the Cartan connection). We also find the geodesics of the Cartan connection. More... »

PAGES

43-50

Journal

TITLE

Russian Mathematics

ISSUE

8

VOLUME

62

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1066369x18080078

DOI

http://dx.doi.org/10.3103/s1066369x18080078

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105778299


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Kazan Federal University", 
          "id": "https://www.grid.ac/institutes/grid.77268.3c", 
          "name": [
            "Institute of Management, Economics and Finances, Kazan Federal University, ul. Butlerova 4, 420012, Kazan, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Romanova", 
        "givenName": "E. M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3103/s1066369x09050089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028052913", 
          "https://doi.org/10.3103/s1066369x09050089"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "We consider the quotient manifold of the manifold of nondegenerate affinor fields on a compact manifold with respect to the action of the group of nowhere vanishing functions. This manifold is endowed with a structure of infinite-dimensional Lie group. On this Lie group, we construct an object of linear connection with respect to which all left-invariant vector fields are covariantly constant (the Cartan connection). We also find the geodesics of the Cartan connection.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s1066369x18080078", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295492", 
        "issn": [
          "0021-3446", 
          "1934-810X"
        ], 
        "name": "Russian Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "On Geodesic Curves on Quotient Manifold of Nondegenerate Affinor Fields", 
    "pagination": "43-50", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ce4961801001d05570f0f3adcaea6594c335fe960dede66a2f12df559fcb2520"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1066369x18080078"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105778299"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1066369x18080078", 
      "https://app.dimensions.ai/details/publication/pub.1105778299"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000539.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3103%2FS1066369X18080078"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080078'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080078'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080078'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080078'


 

This table displays all metadata directly associated to this object as RDF triples.

64 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1066369x18080078 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N148706723e9748b3a7711433ed1aa516
4 schema:citation sg:pub.10.3103/s1066369x09050089
5 schema:datePublished 2018-08
6 schema:datePublishedReg 2018-08-01
7 schema:description We consider the quotient manifold of the manifold of nondegenerate affinor fields on a compact manifold with respect to the action of the group of nowhere vanishing functions. This manifold is endowed with a structure of infinite-dimensional Lie group. On this Lie group, we construct an object of linear connection with respect to which all left-invariant vector fields are covariantly constant (the Cartan connection). We also find the geodesics of the Cartan connection.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N00ae5635f1da4083acd2f41d9d812260
12 N3db77e23b3d94b12ae9f512c23850e9b
13 sg:journal.1295492
14 schema:name On Geodesic Curves on Quotient Manifold of Nondegenerate Affinor Fields
15 schema:pagination 43-50
16 schema:productId N4ae722c5781745c396d1712435b8c00e
17 N85e4ad8f778c42a29bed8d571ddaeff4
18 Nca66b9d259504c0c814c17a8b43f776b
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105778299
20 https://doi.org/10.3103/s1066369x18080078
21 schema:sdDatePublished 2019-04-11T01:12
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N1c34575add154f239d65f92010a26c3e
24 schema:url http://link.springer.com/10.3103%2FS1066369X18080078
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N00ae5635f1da4083acd2f41d9d812260 schema:issueNumber 8
29 rdf:type schema:PublicationIssue
30 N148706723e9748b3a7711433ed1aa516 rdf:first Nf73f5547e03c421dadaf4188ed25b705
31 rdf:rest rdf:nil
32 N1c34575add154f239d65f92010a26c3e schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N3db77e23b3d94b12ae9f512c23850e9b schema:volumeNumber 62
35 rdf:type schema:PublicationVolume
36 N4ae722c5781745c396d1712435b8c00e schema:name dimensions_id
37 schema:value pub.1105778299
38 rdf:type schema:PropertyValue
39 N85e4ad8f778c42a29bed8d571ddaeff4 schema:name doi
40 schema:value 10.3103/s1066369x18080078
41 rdf:type schema:PropertyValue
42 Nca66b9d259504c0c814c17a8b43f776b schema:name readcube_id
43 schema:value ce4961801001d05570f0f3adcaea6594c335fe960dede66a2f12df559fcb2520
44 rdf:type schema:PropertyValue
45 Nf73f5547e03c421dadaf4188ed25b705 schema:affiliation https://www.grid.ac/institutes/grid.77268.3c
46 schema:familyName Romanova
47 schema:givenName E. M.
48 rdf:type schema:Person
49 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
50 schema:name Mathematical Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
53 schema:name Pure Mathematics
54 rdf:type schema:DefinedTerm
55 sg:journal.1295492 schema:issn 0021-3446
56 1934-810X
57 schema:name Russian Mathematics
58 rdf:type schema:Periodical
59 sg:pub.10.3103/s1066369x09050089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028052913
60 https://doi.org/10.3103/s1066369x09050089
61 rdf:type schema:CreativeWork
62 https://www.grid.ac/institutes/grid.77268.3c schema:alternateName Kazan Federal University
63 schema:name Institute of Management, Economics and Finances, Kazan Federal University, ul. Butlerova 4, 420012, Kazan, Russia
64 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...