Method of Decreasing the Order of a Partial Differential Equation by Reducing to Two Ordinary Differential Equations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07-23

AUTHORS

E. V. Kotova, V. A. Kudinov, E. V. Stefanyuk, T. B. Tarabrina

ABSTRACT

Using additional unknown functions and additional boundary conditions in the integral method of heat balance, we obtain approximate analytic solutions to the non-stationary thermal conductivity problem for an infinite solid cylinder that allow to estimate the temperature state practically in the whole time range of the non-stationary process. The thermal conducting process is divided into two stages with respect to time. The initial problem for the partial differential equation is represented in the form of two problems, in which the integration is performed over ordinary differential equations with respect to corresponding additional unknown functions. This method allows to simplify substantially the solving process of the initial problem by reducing it to the sequential solution of two problems, in each of them additional boundary conditions are used. More... »

PAGES

27-37

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1066369x18080054

DOI

http://dx.doi.org/10.3103/s1066369x18080054

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105778054


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Polytechnic University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Samara State Polytechnic University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotova", 
        "givenName": "E. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Polytechnic University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Samara State Polytechnic University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudinov", 
        "givenName": "V. A.", 
        "id": "sg:person.014602635070.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Polytechnic University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Samara State Polytechnic University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stefanyuk", 
        "givenName": "E. V.", 
        "id": "sg:person.010637046537.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Polytechnic University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Samara State Polytechnic University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tarabrina", 
        "givenName": "T. B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.3103/s1066369x10040079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011087420", 
          "https://doi.org/10.3103/s1066369x10040079"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07-23", 
    "datePublishedReg": "2018-07-23", 
    "description": "Using additional unknown functions and additional boundary conditions in the integral method of heat balance, we obtain approximate analytic solutions to the non-stationary thermal conductivity problem for an infinite solid cylinder that allow to estimate the temperature state practically in the whole time range of the non-stationary process. The thermal conducting process is divided into two stages with respect to time. The initial problem for the partial differential equation is represented in the form of two problems, in which the integration is performed over ordinary differential equations with respect to corresponding additional unknown functions. This method allows to simplify substantially the solving process of the initial problem by reducing it to the sequential solution of two problems, in each of them additional boundary conditions are used.", 
    "genre": "article", 
    "id": "sg:pub.10.3103/s1066369x18080054", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295492", 
        "issn": [
          "0021-3446", 
          "1934-810X"
        ], 
        "name": "Russian Mathematics", 
        "publisher": "Allerton Press", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "keywords": [
      "partial differential equations", 
      "ordinary differential equations", 
      "differential equations", 
      "additional unknown functions", 
      "initial problem", 
      "additional boundary conditions", 
      "non-stationary processes", 
      "approximate analytic solution", 
      "boundary conditions", 
      "sequential solution", 
      "unknown function", 
      "analytic solution", 
      "thermal conductivity problem", 
      "whole time range", 
      "conductivity problem", 
      "equations", 
      "integral method", 
      "problem", 
      "infinite solid cylinder", 
      "solution", 
      "conducting process", 
      "temperature state", 
      "function", 
      "solid cylinder", 
      "respect", 
      "heat balance", 
      "conditions", 
      "integration", 
      "process", 
      "cylinder", 
      "form", 
      "order", 
      "time range", 
      "state", 
      "time", 
      "balance", 
      "range", 
      "stage", 
      "method", 
      "non-stationary thermal conductivity problem", 
      "thermal conducting process"
    ], 
    "name": "Method of Decreasing the Order of a Partial Differential Equation by Reducing to Two Ordinary Differential Equations", 
    "pagination": "27-37", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105778054"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1066369x18080054"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1066369x18080054", 
      "https://app.dimensions.ai/details/publication/pub.1105778054"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_777.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.3103/s1066369x18080054"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080054'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080054'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080054'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080054'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      22 PREDICATES      67 URIs      58 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1066369x18080054 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5f781aacfe364d5f8649a524a54ba75f
4 schema:citation sg:pub.10.3103/s1066369x10040079
5 schema:datePublished 2018-07-23
6 schema:datePublishedReg 2018-07-23
7 schema:description Using additional unknown functions and additional boundary conditions in the integral method of heat balance, we obtain approximate analytic solutions to the non-stationary thermal conductivity problem for an infinite solid cylinder that allow to estimate the temperature state practically in the whole time range of the non-stationary process. The thermal conducting process is divided into two stages with respect to time. The initial problem for the partial differential equation is represented in the form of two problems, in which the integration is performed over ordinary differential equations with respect to corresponding additional unknown functions. This method allows to simplify substantially the solving process of the initial problem by reducing it to the sequential solution of two problems, in each of them additional boundary conditions are used.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf Nc00a2b15c9774ef8a1fabcbad2d42aa5
12 Neea1e2467ec9449792871b20d186b6a3
13 sg:journal.1295492
14 schema:keywords additional boundary conditions
15 additional unknown functions
16 analytic solution
17 approximate analytic solution
18 balance
19 boundary conditions
20 conditions
21 conducting process
22 conductivity problem
23 cylinder
24 differential equations
25 equations
26 form
27 function
28 heat balance
29 infinite solid cylinder
30 initial problem
31 integral method
32 integration
33 method
34 non-stationary processes
35 non-stationary thermal conductivity problem
36 order
37 ordinary differential equations
38 partial differential equations
39 problem
40 process
41 range
42 respect
43 sequential solution
44 solid cylinder
45 solution
46 stage
47 state
48 temperature state
49 thermal conducting process
50 thermal conductivity problem
51 time
52 time range
53 unknown function
54 whole time range
55 schema:name Method of Decreasing the Order of a Partial Differential Equation by Reducing to Two Ordinary Differential Equations
56 schema:pagination 27-37
57 schema:productId Ne0aaa65df42340a1b3c6e7ada55f8756
58 Ne8e3b7cec4224097a014494b389381d4
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105778054
60 https://doi.org/10.3103/s1066369x18080054
61 schema:sdDatePublished 2021-12-01T19:42
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N7079461f4d554908bb9d15326c59e605
64 schema:url https://doi.org/10.3103/s1066369x18080054
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N0b6921d7585445e59da672da62862c18 rdf:first sg:person.010637046537.80
69 rdf:rest N28c97a2425e0445bb0b6a37079ed61fa
70 N1374767d326f4c5cbf9e14c9e587b094 rdf:first sg:person.014602635070.00
71 rdf:rest N0b6921d7585445e59da672da62862c18
72 N21d9acc1907245bea1f9ce1f8f639ec0 schema:affiliation grid-institutes:None
73 schema:familyName Kotova
74 schema:givenName E. V.
75 rdf:type schema:Person
76 N28c97a2425e0445bb0b6a37079ed61fa rdf:first Neb10f4f1c9d8426eb9e64d55e80e8891
77 rdf:rest rdf:nil
78 N5f781aacfe364d5f8649a524a54ba75f rdf:first N21d9acc1907245bea1f9ce1f8f639ec0
79 rdf:rest N1374767d326f4c5cbf9e14c9e587b094
80 N7079461f4d554908bb9d15326c59e605 schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 Nc00a2b15c9774ef8a1fabcbad2d42aa5 schema:issueNumber 8
83 rdf:type schema:PublicationIssue
84 Ne0aaa65df42340a1b3c6e7ada55f8756 schema:name dimensions_id
85 schema:value pub.1105778054
86 rdf:type schema:PropertyValue
87 Ne8e3b7cec4224097a014494b389381d4 schema:name doi
88 schema:value 10.3103/s1066369x18080054
89 rdf:type schema:PropertyValue
90 Neb10f4f1c9d8426eb9e64d55e80e8891 schema:affiliation grid-institutes:None
91 schema:familyName Tarabrina
92 schema:givenName T. B.
93 rdf:type schema:Person
94 Neea1e2467ec9449792871b20d186b6a3 schema:volumeNumber 62
95 rdf:type schema:PublicationVolume
96 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
97 schema:name Mathematical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
100 schema:name Pure Mathematics
101 rdf:type schema:DefinedTerm
102 sg:journal.1295492 schema:issn 0021-3446
103 1934-810X
104 schema:name Russian Mathematics
105 schema:publisher Allerton Press
106 rdf:type schema:Periodical
107 sg:person.010637046537.80 schema:affiliation grid-institutes:None
108 schema:familyName Stefanyuk
109 schema:givenName E. V.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010637046537.80
111 rdf:type schema:Person
112 sg:person.014602635070.00 schema:affiliation grid-institutes:None
113 schema:familyName Kudinov
114 schema:givenName V. A.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014602635070.00
116 rdf:type schema:Person
117 sg:pub.10.3103/s1066369x10040079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011087420
118 https://doi.org/10.3103/s1066369x10040079
119 rdf:type schema:CreativeWork
120 grid-institutes:None schema:alternateName Samara State Polytechnic University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia
121 schema:name Samara State Polytechnic University, ul. Molodogvardeiskaya 244, 443100, Samara, Russia
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...