On Symmetric Spaces With Convergence in Measure on Reflexive Subspaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08

AUTHORS

S. V. Astashkin, S. I. Strakhov

ABSTRACT

A closed subspace H of a symmetric space X on [0, 1] is said to be strongly embedded in X if in H the convergence in X-norm is equivalent to the convergence in measure. We study symmetric spaces X with the property that all their reflexive subspaces are strongly embedded in X. We prove that it is the case for all spaces, which satisfy an analogue of the classical Dunford–Pettis theorem on relatively weakly compact subsets in L1. At the same time the converse assertion fails for a broad class of separableMarcinkiewicz spaces. More... »

PAGES

1-8

Journal

TITLE

Russian Mathematics

ISSUE

8

VOLUME

62

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1066369x18080017

DOI

http://dx.doi.org/10.3103/s1066369x18080017

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105773438


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Aerospace University", 
          "id": "https://www.grid.ac/institutes/grid.79011.3e", 
          "name": [
            "Samara National Research University, Moskovskoe sh. 34, 443086, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astashkin", 
        "givenName": "S. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Aerospace University", 
          "id": "https://www.grid.ac/institutes/grid.79011.3e", 
          "name": [
            "Samara National Research University, Moskovskoe sh. 34, 443086, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strakhov", 
        "givenName": "S. I.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-35347-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022611016", 
          "https://doi.org/10.1007/978-3-662-35347-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-35347-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022611016", 
          "https://doi.org/10.1007/978-3-662-35347-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11117-007-2146-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027489411", 
          "https://doi.org/10.1007/s11117-007-2146-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033281237", 
          "https://doi.org/10.1007/bf02392838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2014.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050941601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/16073606.1994.9631762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058409195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.1960.9.59013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067510398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1974.54.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069066138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm113-2-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072181960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm-21-2-161-176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091703164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511543012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098787015"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "A closed subspace H of a symmetric space X on [0, 1] is said to be strongly embedded in X if in H the convergence in X-norm is equivalent to the convergence in measure. We study symmetric spaces X with the property that all their reflexive subspaces are strongly embedded in X. We prove that it is the case for all spaces, which satisfy an analogue of the classical Dunford\u2013Pettis theorem on relatively weakly compact subsets in L1. At the same time the converse assertion fails for a broad class of separableMarcinkiewicz spaces.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s1066369x18080017", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295492", 
        "issn": [
          "0021-3446", 
          "1934-810X"
        ], 
        "name": "Russian Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "On Symmetric Spaces With Convergence in Measure on Reflexive Subspaces", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "416e4817fe929162406e66933df25c6d817fd7e9f376cb9f1555583fe7557fd7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1066369x18080017"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105773438"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1066369x18080017", 
      "https://app.dimensions.ai/details/publication/pub.1105773438"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000539.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3103%2FS1066369X18080017"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080017'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080017'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080017'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080017'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1066369x18080017 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1e44b87ce8e44430a95870a383d49ef0
4 schema:citation sg:pub.10.1007/978-3-662-35347-9
5 sg:pub.10.1007/bf02392838
6 sg:pub.10.1007/s11117-007-2146-y
7 https://doi.org/10.1016/j.jfa.2014.02.011
8 https://doi.org/10.1017/cbo9780511543012
9 https://doi.org/10.1080/16073606.1994.9631762
10 https://doi.org/10.1512/iumj.1960.9.59013
11 https://doi.org/10.2140/pjm.1974.54.35
12 https://doi.org/10.4064/cm113-2-13
13 https://doi.org/10.4064/sm-21-2-161-176
14 schema:datePublished 2018-08
15 schema:datePublishedReg 2018-08-01
16 schema:description A closed subspace H of a symmetric space X on [0, 1] is said to be strongly embedded in X if in H the convergence in X-norm is equivalent to the convergence in measure. We study symmetric spaces X with the property that all their reflexive subspaces are strongly embedded in X. We prove that it is the case for all spaces, which satisfy an analogue of the classical Dunford–Pettis theorem on relatively weakly compact subsets in L1. At the same time the converse assertion fails for a broad class of separableMarcinkiewicz spaces.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N7eff5d401b7a40b985d22f5abf66231b
21 Nb49b0ec1647545d6bf69c06e33a4870b
22 sg:journal.1295492
23 schema:name On Symmetric Spaces With Convergence in Measure on Reflexive Subspaces
24 schema:pagination 1-8
25 schema:productId N5d7ea7e50d7e45179a36c570e8c01a1f
26 Nd08d7c890dbf4b9d9e5437a1389d956c
27 Nedaabcea7b1140acbbd9286169e4a8e2
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105773438
29 https://doi.org/10.3103/s1066369x18080017
30 schema:sdDatePublished 2019-04-10T14:15
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N8d0614eff36a4331858743db240cc705
33 schema:url http://link.springer.com/10.3103%2FS1066369X18080017
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N1e44b87ce8e44430a95870a383d49ef0 rdf:first Nb581e2a7d5c14410b552d1bb4eab0a86
38 rdf:rest Nd386dde014c84e08b03751001b305f61
39 N5d7ea7e50d7e45179a36c570e8c01a1f schema:name readcube_id
40 schema:value 416e4817fe929162406e66933df25c6d817fd7e9f376cb9f1555583fe7557fd7
41 rdf:type schema:PropertyValue
42 N7eff5d401b7a40b985d22f5abf66231b schema:issueNumber 8
43 rdf:type schema:PublicationIssue
44 N8d0614eff36a4331858743db240cc705 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Nb49b0ec1647545d6bf69c06e33a4870b schema:volumeNumber 62
47 rdf:type schema:PublicationVolume
48 Nb581e2a7d5c14410b552d1bb4eab0a86 schema:affiliation https://www.grid.ac/institutes/grid.79011.3e
49 schema:familyName Astashkin
50 schema:givenName S. V.
51 rdf:type schema:Person
52 Nd08d7c890dbf4b9d9e5437a1389d956c schema:name dimensions_id
53 schema:value pub.1105773438
54 rdf:type schema:PropertyValue
55 Nd386dde014c84e08b03751001b305f61 rdf:first Nea2011005a94466ca0e21939fb3b7599
56 rdf:rest rdf:nil
57 Nea2011005a94466ca0e21939fb3b7599 schema:affiliation https://www.grid.ac/institutes/grid.79011.3e
58 schema:familyName Strakhov
59 schema:givenName S. I.
60 rdf:type schema:Person
61 Nedaabcea7b1140acbbd9286169e4a8e2 schema:name doi
62 schema:value 10.3103/s1066369x18080017
63 rdf:type schema:PropertyValue
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
68 schema:name Pure Mathematics
69 rdf:type schema:DefinedTerm
70 sg:journal.1295492 schema:issn 0021-3446
71 1934-810X
72 schema:name Russian Mathematics
73 rdf:type schema:Periodical
74 sg:pub.10.1007/978-3-662-35347-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022611016
75 https://doi.org/10.1007/978-3-662-35347-9
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02392838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033281237
78 https://doi.org/10.1007/bf02392838
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/s11117-007-2146-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027489411
81 https://doi.org/10.1007/s11117-007-2146-y
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.jfa.2014.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050941601
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1017/cbo9780511543012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098787015
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1080/16073606.1994.9631762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058409195
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1512/iumj.1960.9.59013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067510398
90 rdf:type schema:CreativeWork
91 https://doi.org/10.2140/pjm.1974.54.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069066138
92 rdf:type schema:CreativeWork
93 https://doi.org/10.4064/cm113-2-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072181960
94 rdf:type schema:CreativeWork
95 https://doi.org/10.4064/sm-21-2-161-176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091703164
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.79011.3e schema:alternateName Samara State Aerospace University
98 schema:name Samara National Research University, Moskovskoe sh. 34, 443086, Samara, Russia
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...