On Symmetric Spaces With Convergence in Measure on Reflexive Subspaces View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-08

AUTHORS

S. V. Astashkin, S. I. Strakhov

ABSTRACT

A closed subspace H of a symmetric space X on [0, 1] is said to be strongly embedded in X if in H the convergence in X-norm is equivalent to the convergence in measure. We study symmetric spaces X with the property that all their reflexive subspaces are strongly embedded in X. We prove that it is the case for all spaces, which satisfy an analogue of the classical Dunford–Pettis theorem on relatively weakly compact subsets in L1. At the same time the converse assertion fails for a broad class of separableMarcinkiewicz spaces. More... »

PAGES

1-8

Journal

TITLE

Russian Mathematics

ISSUE

8

VOLUME

62

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.3103/s1066369x18080017

DOI

http://dx.doi.org/10.3103/s1066369x18080017

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105773438


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samara State Aerospace University", 
          "id": "https://www.grid.ac/institutes/grid.79011.3e", 
          "name": [
            "Samara National Research University, Moskovskoe sh. 34, 443086, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Astashkin", 
        "givenName": "S. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Samara State Aerospace University", 
          "id": "https://www.grid.ac/institutes/grid.79011.3e", 
          "name": [
            "Samara National Research University, Moskovskoe sh. 34, 443086, Samara, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Strakhov", 
        "givenName": "S. I.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-35347-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022611016", 
          "https://doi.org/10.1007/978-3-662-35347-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-35347-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022611016", 
          "https://doi.org/10.1007/978-3-662-35347-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11117-007-2146-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027489411", 
          "https://doi.org/10.1007/s11117-007-2146-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02392838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033281237", 
          "https://doi.org/10.1007/bf02392838"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jfa.2014.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050941601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/16073606.1994.9631762", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058409195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1512/iumj.1960.9.59013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067510398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2140/pjm.1974.54.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069066138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/cm113-2-13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072181960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4064/sm-21-2-161-176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091703164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511543012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098787015"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-08", 
    "datePublishedReg": "2018-08-01", 
    "description": "A closed subspace H of a symmetric space X on [0, 1] is said to be strongly embedded in X if in H the convergence in X-norm is equivalent to the convergence in measure. We study symmetric spaces X with the property that all their reflexive subspaces are strongly embedded in X. We prove that it is the case for all spaces, which satisfy an analogue of the classical Dunford\u2013Pettis theorem on relatively weakly compact subsets in L1. At the same time the converse assertion fails for a broad class of separableMarcinkiewicz spaces.", 
    "genre": "research_article", 
    "id": "sg:pub.10.3103/s1066369x18080017", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295492", 
        "issn": [
          "0021-3446", 
          "1934-810X"
        ], 
        "name": "Russian Mathematics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "62"
      }
    ], 
    "name": "On Symmetric Spaces With Convergence in Measure on Reflexive Subspaces", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "416e4817fe929162406e66933df25c6d817fd7e9f376cb9f1555583fe7557fd7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.3103/s1066369x18080017"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105773438"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.3103/s1066369x18080017", 
      "https://app.dimensions.ai/details/publication/pub.1105773438"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000539.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.3103%2FS1066369X18080017"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080017'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080017'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080017'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.3103/s1066369x18080017'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.3103/s1066369x18080017 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5aed582c0532411685c2d76673590a2f
4 schema:citation sg:pub.10.1007/978-3-662-35347-9
5 sg:pub.10.1007/bf02392838
6 sg:pub.10.1007/s11117-007-2146-y
7 https://doi.org/10.1016/j.jfa.2014.02.011
8 https://doi.org/10.1017/cbo9780511543012
9 https://doi.org/10.1080/16073606.1994.9631762
10 https://doi.org/10.1512/iumj.1960.9.59013
11 https://doi.org/10.2140/pjm.1974.54.35
12 https://doi.org/10.4064/cm113-2-13
13 https://doi.org/10.4064/sm-21-2-161-176
14 schema:datePublished 2018-08
15 schema:datePublishedReg 2018-08-01
16 schema:description A closed subspace H of a symmetric space X on [0, 1] is said to be strongly embedded in X if in H the convergence in X-norm is equivalent to the convergence in measure. We study symmetric spaces X with the property that all their reflexive subspaces are strongly embedded in X. We prove that it is the case for all spaces, which satisfy an analogue of the classical Dunford–Pettis theorem on relatively weakly compact subsets in L1. At the same time the converse assertion fails for a broad class of separableMarcinkiewicz spaces.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N74f87dc259bb4685b914c36fe1e43b5e
21 Nc6e9bbede42d4982bf09d5c4d1d0b83a
22 sg:journal.1295492
23 schema:name On Symmetric Spaces With Convergence in Measure on Reflexive Subspaces
24 schema:pagination 1-8
25 schema:productId N0e46c5c88f3b410298c1a7bc26cc432a
26 N10839d18db384b00871970879db2b09e
27 N7f6e2ff0523d4d5ea9f0d8cee751345b
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105773438
29 https://doi.org/10.3103/s1066369x18080017
30 schema:sdDatePublished 2019-04-10T14:15
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nb0be1d5cd30346539505a0c19fd0d32c
33 schema:url http://link.springer.com/10.3103%2FS1066369X18080017
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0e46c5c88f3b410298c1a7bc26cc432a schema:name doi
38 schema:value 10.3103/s1066369x18080017
39 rdf:type schema:PropertyValue
40 N10839d18db384b00871970879db2b09e schema:name dimensions_id
41 schema:value pub.1105773438
42 rdf:type schema:PropertyValue
43 N31090b6896474c7ba2cf7aa90852e65c rdf:first Nfe74ed1e20e84c4cb4a2afb4d22fc536
44 rdf:rest rdf:nil
45 N4b9092a1085b4b5a930fb6a016da92f2 schema:affiliation https://www.grid.ac/institutes/grid.79011.3e
46 schema:familyName Astashkin
47 schema:givenName S. V.
48 rdf:type schema:Person
49 N5aed582c0532411685c2d76673590a2f rdf:first N4b9092a1085b4b5a930fb6a016da92f2
50 rdf:rest N31090b6896474c7ba2cf7aa90852e65c
51 N74f87dc259bb4685b914c36fe1e43b5e schema:volumeNumber 62
52 rdf:type schema:PublicationVolume
53 N7f6e2ff0523d4d5ea9f0d8cee751345b schema:name readcube_id
54 schema:value 416e4817fe929162406e66933df25c6d817fd7e9f376cb9f1555583fe7557fd7
55 rdf:type schema:PropertyValue
56 Nb0be1d5cd30346539505a0c19fd0d32c schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Nc6e9bbede42d4982bf09d5c4d1d0b83a schema:issueNumber 8
59 rdf:type schema:PublicationIssue
60 Nfe74ed1e20e84c4cb4a2afb4d22fc536 schema:affiliation https://www.grid.ac/institutes/grid.79011.3e
61 schema:familyName Strakhov
62 schema:givenName S. I.
63 rdf:type schema:Person
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
68 schema:name Pure Mathematics
69 rdf:type schema:DefinedTerm
70 sg:journal.1295492 schema:issn 0021-3446
71 1934-810X
72 schema:name Russian Mathematics
73 rdf:type schema:Periodical
74 sg:pub.10.1007/978-3-662-35347-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022611016
75 https://doi.org/10.1007/978-3-662-35347-9
76 rdf:type schema:CreativeWork
77 sg:pub.10.1007/bf02392838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033281237
78 https://doi.org/10.1007/bf02392838
79 rdf:type schema:CreativeWork
80 sg:pub.10.1007/s11117-007-2146-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1027489411
81 https://doi.org/10.1007/s11117-007-2146-y
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/j.jfa.2014.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050941601
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1017/cbo9780511543012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098787015
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1080/16073606.1994.9631762 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058409195
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1512/iumj.1960.9.59013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067510398
90 rdf:type schema:CreativeWork
91 https://doi.org/10.2140/pjm.1974.54.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069066138
92 rdf:type schema:CreativeWork
93 https://doi.org/10.4064/cm113-2-13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072181960
94 rdf:type schema:CreativeWork
95 https://doi.org/10.4064/sm-21-2-161-176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091703164
96 rdf:type schema:CreativeWork
97 https://www.grid.ac/institutes/grid.79011.3e schema:alternateName Samara State Aerospace University
98 schema:name Samara National Research University, Moskovskoe sh. 34, 443086, Samara, Russia
99 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...